

Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

Website www.ictgualab.co.uk Email: Support@ictgualab.co.uk

ICTQual AB

Level 6 Diploma in Mechanical Engineering

360 Credits – Three Years

Contents

About ICTQual AB	2
Course Overview	2
Certification Framework	3
Entry Requirements	3
Qualification Structure	3
Centre Requirements	5
Support for Candidates	6
Assessment	6
Unit Descriptors	8

Qualification Specifications about

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

About ICTQual AB

ICTQual AB UK Ltd. is a distinguished awarding body based in the United Kingdom, dedicated to fostering excellence in education, training, and skills development. Committed to global standards, ICTQual AB provides internationally recognized qualifications that empower individuals and organizations to thrive in an increasingly competitive world. Their offerings span diverse industries, including technical fields, health and safety, management, and more, ensuring relevance and adaptability to modern workforce needs.

The organization prides itself on delivering high-quality educational solutions through a network of Approved Training Centres worldwide. Their robust curriculum and innovative teaching methodologies are designed to equip learners with practical knowledge and skills for personal and professional growth. With a mission to inspire lifelong learning and drive positive change, ICTQual AB continuously evolves its programs to stay ahead of industry trends and technological advancements.

ICTQual AB's vision is to set benchmarks for educational excellence while promoting inclusivity and integrity. Their unwavering focus on quality and accessibility makes them a trusted partner in shaping future-ready professionals and advancing societal progress globally.

Course Overview

The ICTQual Level 6 Diploma in Mechanical Engineering is a comprehensive qualification designed for individuals seeking to enhance their expertise and skills in mechanical engineering. This diploma is ideal for professionals who aim to work in technical management roles or as advanced engineers, with a focus on both practical skills and theoretical knowledge.

This three-year, 360-credit program covers a broad range of topics, including the design and operation of mechanical systems, advanced engineering materials, thermodynamics, and production techniques. Students will gain an in-depth understanding of mechanical engineering principles, alongside practical training in real-world applications. The course prepares learners to tackle complex engineering challenges and equips them with the knowledge to drive innovation in the industry.

The diploma also emphasizes the development of leadership and project management skills, making it suitable for those looking to advance their careers in senior engineering positions. Graduates of this program can pursue a variety of career paths, including roles in design engineering, project management, and production engineering. Upon completion, students will be well-prepared to take on high-level responsibilities within the mechanical engineering field

www.ictqualab.co.uk

Page | 2

Certification Framework

Qualification title	ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years
Course ID	ME0001
Qualification Credits	360 Credits
Course Duration	Three Years
Grading Type	Pass / Fail
Competency Evaluation	Coursework / Assignments / Verifiable Experience
Assessment	The assessment and verification process for ICTQual qualifications involves two key stages:

Internal Assessment and Verification:

- ✓ Conducted by the staff at the Approved Training Centre (ATC). Ensures learners meet the required standards through continuous assessments.
- ✓ Internal quality assurance (IQA) is carried out by the centre's IQA staff to validate the assessment processes.

External Quality Assurance:

- ✓ Managed by ICTQual AB verifiers, who periodically review the centre's assessment and IQA processes.
- ✓ Verifies that assessments are conducted to the required standards and ensures consistency across centres

Entry Requirements

To enroll in the ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years, candidates must meet the following entry requirements:

- ✓ Applicants must be at least 16 years old.
- ✓ A minimum of Level 5 qualification (or equivalent) in a related field such as engineering, mathematics, or science. This could include A-levels, a Level 5 BTEC qualification, or an equivalent.
- Strong understanding of Mathematics and Physics, as these subjects are fundamental to the study of mechanical engineering. A minimum of GCSEs or equivalent qualifications in Mathematics and English is often required.
- ✓ While no prior mechanical engineering experience is necessary, applicants with a background in engineering, technology, or similar subjects may find the course easier to understand.
- ✓ For non-native English speakers, proof of English language proficiency, such as an IELTS score of 6.0 or equivalent, is required.
- ✓ Some institutions may also assess the applicant's suitability for the course through an interview or a skills assessment to gauge their readiness for higher-level engineering studies.

Qualification Structure

This qualification comprises 36 mandatory units, totaling 360 credits. Candidates must successfully complete all mandatory units to achieve the qualification.

www.ictqualab.co.uk

Page | 3

Unit Ref#	Unit Title				
Year 1: Foundation and Core Engineering Principles					
ME0001-1	Mathematics for Engineering	10			
ME0001-2	Engineering Principles	10			
ME0001-3	Materials Science and Engineering	10			
ME0001-4	Engineering Drawing and CAD	10			
ME0001-5	Statics and Dynamics	10			
ME0001-6	Introduction to Thermodynamics	10			
ME0001-7	Manufacturing Processes	10			
ME0001-8	Fluid Mechanics	10			
ME0001-9	Electrical and Electronic Systems for Engineers	10			
ME0001-10	Engineering Mathematics for Design	10			
ME0001-11	Mechanical Design Fundamentals	10			
ME0001-12	Engineering Project Management				
	Year 2: Advanced Engineering Concepts and Applications				
ME0001-13	Advanced Thermodynamics	10			
ME0001-14	Strength of Materials	10			
ME0001-15	Heat Transfer and Fluid Dynamics	10			
ME0001-16	Advanced Manufacturing Techniques	10			
ME0001-17	Mechanical Vibrations and Acoustics	10			
ME0001-18	Engineering Dynamics and Control	10			
ME0001-19	Design and Analysis of Machine Elements	10			
ME0001-20	Control Systems for Mechanical Engineering	10			
ME0001-21	Engineering Materials and Failure Analysis	10			
ME0001-22	Computer-Aided Engineering (CAE)	10			
ME0001-23	Mechanical System Design	10			
ME0001-24	Project Planning and Cost Estimation	10			
	Year 3: Specialization and Practical Application				
ME0001-25	Advanced Mechanical System Design	10			
ME0001-26	Energy Systems and Sustainability	10			
ME0001-27	Advanced CAD and 3D Modeling	10			
ME0001-28	Finite Element Analysis (FEA) for Mechanical Engineers	10			
ME0001-29	Advanced Manufacturing and Robotics	10			
ME0001-30	Mechatronics and Automation	10			
ME0001-31	Engineering Research Methodology	10			
ME0001-32	Industrial Engineering and Process Optimization	10			
ME0001-33	Design for Manufacturability	10			
ME0001-34	Professional Practice in Mechanical Engineering	10			
ME0001-35	Engineering Innovation and Entrepreneurship	10			
ME0001-36	Capstone Project/Thesis	10			

Centre Requirements

Even if a centre is already registered with ICTQual AB, it must meet specific requirements to deliver the ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years. These standards ensure the quality and consistency of training, assessment, and learner support.

1. Approval to Deliver the Qualification

- ✓ Centres must obtain formal approval from ICTQual AB to deliver this specific qualification, even if they are already registered.
- ✓ The approval process includes a review of resources, staff qualifications, and policies relevant to the program.

2. Qualified Staff

- ✓ Tutors: Must have relevant qualifications in Mechanical Engineering at Level 7 or higher, alongside teaching/training experience.
- ✓ Assessors: Must hold a recognized assessor qualification and demonstrate expertise in Mechanical Engineering.
- ✓ **Internal Quality Assurers (IQAs):** Must be appropriately qualified and experienced to monitor the quality of assessments.

3. Learning Facilities

Centres must have access to appropriate learning facilities, which include:

- ✓ Classrooms: Modern, well-equipped spaces with advanced multimedia tools to deliver engaging theoretical instruction in mechanical engineering concepts and design principles.
- ✓ Practical Areas: Hands-on training areas featuring cutting-edge tools, machinery, and equipment such as lathes, milling machines, welding stations, and 3D printers for real-world practice and assessments.
- ✓ **Technology Access:** High-performance computers with industry-standard software (e.g., CAD, CAM, FEA) and reliable internet connectivity to support technical design, analysis, and project work.

4. Health and Safety Compliance

- ✓ Centres must ensure that practical training environments comply with relevant health and safety regulations.
- ✓ Risk assessments must be conducted regularly to maintain a safe learning environment.

5. Resource Requirements

- ✓ Learning Materials: Approved course manuals, textbooks, and study guides aligned with the curriculum.
- ✓ Assessment Tools: Templates, guidelines, and resources for conducting and recording assessments.
- ✓ E-Learning Systems: If offering online or hybrid learning, centres must provide a robust Learning Management System (LMS) to facilitate remote delivery.

6. Assessment and Quality Assurance

- Centres must adhere to ICTQual's assessment standards, ensuring that all assessments are fair, valid, and reliable.
- ✓ Internal quality assurance (IQA) processes must be in place to monitor assessments and provide feedback to assessors.
- ✓ External verification visits from ICTQual will ensure compliance with awarding body standards.

7. Learner Support

- ✓ Centres must provide learners with access to guidance and support throughout the program, including:
- ✓ Academic support for coursework.
- ✓ Career guidance for future progression.
- ✓ Additional support for learners with specific needs (e.g., disabilities or language barriers).

8. Policies and Procedures

Centres must maintain and implement the following policies, as required by ICTQual:

- ✓ Equal Opportunities Policy.
- ✓ Health and Safety Policy.
- ✓ Safeguarding Policies and Procedures.
- ✓ Complaints and Appeals Procedure.
- ✓ Data Protection and Confidentiality Policy.

9. Regular Reporting to ICTQual

- ✓ Centres must provide regular updates to ICTQual AB on learner enrollment, progress, and completion rates.
- ✓ Centres are required to maintain records of assessments and learner achievements for external auditing purposes.

Support for Candidates

Centres should ensure that materials developed to support candidates:

- ✓ Facilitate tracking of achievements as candidates progress through the learning outcomes and assessment criteria.
- \checkmark Include information on how and where ICTQual's policies and procedures can be accessed.
- ✓ Provide mechanisms for Internal and External Quality Assurance staff to verify and authenticate evidence effectively.

This approach ensures transparency, supports candidates' learning journeys, and upholds quality assurance standards.

Assessment

This qualification is competence-based, requiring candidates to demonstrate proficiency as defined in the qualification units. The assessment evaluates the candidate's skills, knowledge, and understanding against the set standards. Key details include:

www.ictqualab.co.uk

Page | 6

Support@ictqualab.co.uk

1. Assessment Process:

- ✓ Must be conducted by an experienced and qualified assessor.
- ✓ Candidates compile a portfolio of evidence that satisfies all learning outcomes and assessment criteria for each unit.
- 2. Types of Evidence:
 - ✓ Observation reports by the assessor.
 - ✓ Assignments, projects, or reports.
 - ✓ Professional discussions.
 - ✓ Witness testimonies.
 - ✓ Candidate-produced work.
 - ✓ Worksheets.
 - ✓ Records of oral and written questioning.
 - ✓ Recognition of Prior Learning (RPL).

3. Learning Outcomes and Assessment Criteria:

- ✓ Learning Outcomes: Define what candidates should know, understand, or accomplish upon completing the unit.
- ✓ Assessment Criteria: Detail the standards candidates must meet to demonstrate that the learning outcomes have been achieved.

This framework ensures rigorous and consistent evaluation of candidates' competence in line with the qualification's objectives.

Unit Descriptors

ME0001 -1. Mathematics for Engineering

The aim of this study unit is to develop learners' proficiency in fundamental mathematical techniques, essential for solving engineering problems. Learners will apply concepts from calculus, algebra, and trigonometry to real-world engineering contexts, enhancing their ability to analyze and solve complex engineering challenges. This unit is designed to provide a solid mathematical foundation that enables learners to effectively approach engineering problems, ensuring accuracy and efficiency in their designs and analyses.

Learning Outcome:	Assessment Criteria:
 Develop proficiency in fundamental mathematical techniques for solving engineering problems. 	 Demonstrate a solid understanding of key mathematical principles, such as calculus, linear algebra, differential equations, and statistics, as they apply to engineering problem-solving. Apply mathematical methods to model and solve real-world engineering problems, including systems analysis, optimization, and process control.
	1.3. Use mathematical tools to analyze complex engineering systems, including mechanical, electrical, and fluid systems, ensuring accurate and reliable results.
	1.4. Develop proficiency in solving both linear and nonlinear equations, using analytical and numerical techniques, to find solutions that support engineering design and analysis.
	1.5. Utilize vector calculus, matrix operations, and transformation techniques to solve multi- dimensional problems commonly encountered in engineering applications.
	1.6. Apply numerical methods, such as finite difference and finite element methods, to solve differential equations and simulate complex systems where analytical solutions are not feasible.
	1.7. Use software tools (e.g., MATLAB, Mathematica, or Python) to perform mathematical computations and visualize results, supporting decision-making in engineering design and analysis.
	1.8. Analyze and interpret mathematical models to ensure that they accurately represent the physical systems being studied, making necessary

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

	adjustments based on real-world constraints and
	data.
	1.9. Develop the ability to communicate mathematical
	reasoning and results clearly, both verbally and in
	writing, to ensure understanding among
	interdisciplinary teams and stakeholders.
2. Apply calculus, algebra, and trigonometry in engineering contexts.	 Preasoning and results clearly, both verbally and minimized interdisciplinary teams and stakeholders. 2.1. Use calculus to solve engineering problems involving rates of change, optimization, and system dynamics, including the analysis of motion, forces, and energy in mechanical systems. 2.2. Apply differential equations to model and solve problems in mechanical systems, electrical circuits, and fluid dynamics, understanding their role in describing time-dependent behaviors and system responses. 2.3. Employ algebraic techniques to manipulate and solve equations relevant to engineering, such as systems of linear equations, polynomials, and expressions involving exponents and logarithms. 2.4. Apply trigonometric functions to analyze forces, motion, and oscillations, using principles such as sine, cosine, and tangent to solve problems involving angles, displacements, and vibrations in mechanical systems. 2.5. Use vector calculus to solve problems involving multi-dimensional forces, work, and flux, especially in fields like fluid mechanics, electromagnetism, and structural analysis. 2.6. Apply integration and differentiation to calculate quantities such as area, volume, work, and energy, which are essential in many engineering analyses and designs. 2.7. Solve engineering problems involving periodic functions, waves, and harmonics using Fourier series and transforms to understand signal
	series and transforms to understand signal processing, vibrations, and heat transfer.
	2.8. Use algebra and trigonometry to model and
	design mechanical components, calculating parameters such as stress, strain, torque, and
	angular velocity in mechanical systems.
	techniques effectively in software tools (e.g.
	MATLAB, Excel, Python) to simulate, analyze, and
	solve engineering problems.

ME0001 -2. Engineering Principles

The aim of this study unit is to provide learners with a solid understanding of core engineering concepts, including forces, motion, and energy, and to enable them to apply these principles in various engineering contexts. Learners will develop a strong foundation in engineering mechanics and systems, equipping them with the essential knowledge to analyze and solve fundamental engineering problems. This unit is designed to prepare learners for more advanced topics in engineering by fostering a clear understanding of the fundamental principles that govern mechanical systems and processes.

Learning Outcome:	Assessment Criteria:
1. Understand and apply core engineering concepts, including forces, motion, and energy.	 1.1. Demonstrate a thorough understanding of fundamental engineering concepts such as Newton's laws of motion, force, energy, and power, and apply them to real-world engineering problems. 1.2. Use principles of statics and dynamics to analyze and solve problems involving forces, motion, and
	 equilibrium in mechanical systems, structures, and materials. 1.3. Apply the concepts of work, energy, and power to understand how mechanical systems convert energy and perform tasks, including analyzing energy efficiency and conservation in various
	systems. 1.4. Analyze linear and rotational motion, using kinematic and dynamic equations to calculate parameters such as displacement, velocity, acceleration, and angular velocity in mechanical systems.
	1.5. Apply principles of energy conservation to analyze systems, including mechanical, thermal, and electrical systems, ensuring that energy losses are minimized and performance is optimized.
	1.6. Use vector analysis to resolve forces and moments in two-dimensional and three- dimensional systems, ensuring accurate predictions of motion and structural behavior.
	1.7. Apply thermodynamics principles to understand energy transformations, including heat transfer, work, and the efficiency of mechanical systems, engines, and power plants.
	 1.8. Integrate engineering concepts to design and optimize systems that require the efficient

	 transfer of energy, such as motors, pumps, turbines, and heat exchangers. 1.9. Develop the ability to communicate complex concepts related to forces, motion, and energy through technical reports, presentations, and diagrams, ensuring clarity and precision.
2. Develop a solid foundation in engineering mechanics and systems.	2.1. Demonstrate a comprehensive understanding of the fundamental principles of engineering mechanics, including statics, dynamics, and kinematics, and apply these principles to solve problems involving forces, motion, and equilibrium.
	2.2. Analyze and solve problems involving rigid body mechanics, including calculating forces and moments, and determining the behavior of structures and mechanical components under various loading conditions.
	2.3. Apply the principles of material mechanics to evaluate stress, strain, deformation, and failure in materials, ensuring that designs meet structural integrity and performance requirements.
	2.4. Understand and apply concepts of fluid mechanics to analyze and design systems involving fluid flow, pressure, and turbulence, considering both compressible and incompressible fluids.
	2.5. Develop an understanding of dynamic systems, including vibration analysis, resonance, and damping, to assess and optimize the behavior of mechanical systems under dynamic loading conditions.
	2.6. Use analytical and numerical methods to model and solve complex engineering systems, employing techniques such as finite element analysis and computational fluid dynamics (CFD).
	2.7. Apply system dynamics principles to model the behavior of mechanical systems, including feedback loops, stability analysis, and control system design for automation and optimization.
	2.8. Understand the interrelationships between mechanical, electrical, and computer systems, and apply this knowledge to integrate systems in multidisciplinary engineering applications.

www.ictqualab.co.uk

Page | 11

ME0001 – 3. Materials Science and Engineering

The aim of this study unit is to provide learners with a comprehensive understanding of the properties and behavior of materials used in mechanical engineering. Learners will analyze material selection and performance, considering factors such as mechanical properties, environmental conditions, and manufacturing processes, to make informed decisions for engineering applications. This unit is designed to equip learners with the knowledge necessary to optimize material choices and ensure the reliability, durability, and performance of mechanical components and systems in real-world engineering scenarios.

Learning Outcome:	Assessment Criteria:
1. Gain an understanding of the properties and behavior of materials used in mechanical engineering.	 Develop a thorough understanding of the fundamental properties of engineering materials, including mechanical, thermal, electrical, and
	chemical properties, and how they influence the behavior and performance of mechanical systems.
	1.2. Analyze the relationship between material
	structures) and the resulting material properties,
	such as strength, hardness, ductility, and
	1.3. Understand the impact of temperature, loading
	conditions, and environmental factors (e.g.,
	properties and performance of materials.
	1.4. Evaluate the effects of material defects, including
	properties of materials and their potential to
	cause failure in engineering applications.
	selection based on the desired performance
	characteristics, including strength-to-weight ratio, thermal conductivity, corrosion resistance, and
	cost-effectiveness for specific mechanical applications.
	1.6. Explore the behavior of materials under different
	torsional) and loading conditions (static, dynamic,
	cyclic), using fundamental mechanics to predict failure modes and performance
	1.7. Investigate advanced materials, such as
	composites, high-performance alloys, and smart materials and understand their applications in
	modern mechanical engineering.
	1.8. Apply principles of material testing, including

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

			tensile testing, impact testing, and hardness testing, to assess material properties and ensure compliance with engineering design requirements.
2.	Analyze material selection and performance in	2.1.	Apply material selection criteria. including
	engineering applications.		mechanical properties, cost, environmental
			impact, and manufacturability, to choose the most suitable materials for specific engineering
		2.2	Evaluate the performance of materials under
		2.2.	different service conditions, such as temperature extremes, corrosive environments, and mechanical stresses, ensuring long-term reliability and durability of mechanical components.
		2.3.	, Analyze material behavior in real-world
			applications, considering factors such as fatigue, wear, creep, and thermal expansion, to predict performance and service life in mechanical systems.
		2.4.	Use material property data (e.g., tensile strength, modulus of elasticity, hardness, and fatigue resistance) to make informed decisions about
			material choices and design specifications.
		2.5.	Assess the impact of material processing methods (e.g., heat treatment, surface finishing, alloying) on the properties and performance of materials in mechanical applications.
		2.6.	Consider the sustainability and environmental impact of material selection, including energy consumption, recyclability, and the ecological footprint of raw materials and manufacturing processes.
		2.7.	Apply computational tools and material selection software (e.g., CES EduPack) to optimize material choices for specific applications, balancing performance requirements, cost constraints, and environmental considerations.
		2.8.	Analyze the failure modes of materials in service (e.g., brittle fracture, plastic deformation, corrosion) and use this information to select materials that minimize the risk of failure in engineering designs.

ME0001 – 4. Engineering Drawing and CAD

The aim of this study unit is to equip learners with the skills to create and interpret engineering drawings, ensuring clear communication of design intent. Learners will develop proficiency in Computer-Aided Design (CAD) software for modeling mechanical systems, enabling them to produce accurate technical drawings and 3D models. This unit is designed to provide learners with the essential tools for effective design visualization, enhancing their ability to communicate complex engineering concepts and create detailed, functional designs for mechanical systems.

Learr	ning Outco	ome:				Assessment Criteria:
Learr 1. L d	hing Outco earn to rawings.	ome: create	and	interpret	engineering	 Assessment Criteria: 1.1. Develop proficiency in reading and interpreting engineering drawings, including understanding different views (e.g., orthographic, isometric, sectional) and how they represent the geometry of mechanical components and systems. 1.2. Learn to use standard engineering drawing conventions, including line types (solid, dashed, hidden), symbols, dimensions, and tolerances, to accurately convey design information. 1.3. Understand the use of scales in engineering drawings and how to interpret and create scaled representations of mechanical parts and assemblies. 1.4. Gain knowledge of different types of technical drawings, including assembly drawings, detail drawings, and schematics, and understand their role in the design, manufacturing, and assembly processes. 1.5. Apply geometric dimensioning and tolerancing (GD&T) principles to ensure that parts meet design specifications and fit together as intended, including understanding features like flatness, concentricity, and profile tolerance. 1.6. Use computer-aided design (CAD) software to create and modify 2D and 3D engineering drawings, including solid modeling and parametric design techniques for creating accurate digital representations of mechanical systems. 1.7. Understand how to represent complex features
						such as threads, welds, and surface finishes on engineering drawings, ensuring that
						manufacturing processes are clearly defined.
						1.8. Learn to communicate design intent through

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

		engineering drawings, ensuring that the
		drawings are clear, accurate, and unambiguous
		to avoid misinterpretations in the manufacturing
		process.
2.	Develop skills in Computer-Aided Design (CAD)	2.1. Gain proficiency in using industry-standard CAD
	for mechanical system modeling.	software (e.g., AutoCAD, SolidWorks, CATIA,
		Fusion 360) to create 2D and 3D models of
		mechanical components and systems, ensuring
		accuracy and precision in design representations.
		2.2. Learn how to construct parametric models, using
		dimensions and constraints to define the
		geometry of mechanical parts and assemblies,
		allowing for easy modifications and iterations
		during the design process.
		2.3. Develop skills in creating detailed engineering
		drawings from CAD models, including views,
		section cuts, dimensions, and annotations, to
		communicate design specifications clearly.
		2.4. Apply advanced CAD techniques such as surface
		modeling, sheet metal design, and complex
		geometries to model intricate mechanical
		systems and components accurately.
		2.5. Utilize CAD tools to simulate the behavior of
		mechanical systems, including interference
		checks, motion analysis, and basic finite element
		analysis (FEA) to evaluate design performance
		before manufacturing.
		2.6. Develop an understanding of CAD file
		management, including version control,
		assembly structures, and file formats, ensuring
		efficient collaboration and data sharing among
		team members.
		2.7. Create assemblies in CAD, applying mates and
		constraints to simulate real-world mechanical
		interactions and ensuring that all parts fit
		together correctly.
		2.8. Learn how to integrate CAD models with other
		engineering software, such as finite element
		analysis (FEA) or computational fluid dynamics
		(CFD), to perform more advanced simulations
		and optimize designs.

www.ictqualab.co.uk

Page | 15

ME0001 – 5. Statics and Dynamics

The aim of this study unit is to provide learners with a deep understanding of the principles of static and dynamic analysis, enabling them to solve engineering problems involving forces, motion, and equilibrium in mechanical systems. Learners will develop the ability to apply these principles to analyze both stationary and moving systems, ensuring accurate calculations of forces, moments, and motion. This unit is designed to lay a strong foundation in engineering mechanics, preparing learners to tackle complex real-world mechanical challenges with confidence and precision.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Apply the principles of static and dynamic analysis to engineering problems.	 Assessment Criteria: 1.1. Apply the principles of statics to analyze mechanical systems at rest, calculating forces, moments, and equilibrium conditions in structures, components, and assemblies to ensure they can safely withstand applied loads. 1.2. Use free-body diagrams to represent and analyze forces acting on objects, and apply equilibrium equations (∑F = 0, ∑M = 0) to solve for unknown forces and moments in static systems. 1.3. Apply the principles of dynamics to analyze systems in motion, including solving problems involving acceleration, velocity, displacement, and forces in systems under dynamic loading conditions. 1.4. Use Newton's laws of motion and work-energy principles to solve dynamic problems in mechanical systems, such as the analysis of moving parts, machinery, and vehicles under under dynamic loading conditions.
	1.5. Apply the concepts of impulse and momentum to analyze the behavior of systems subjected to impact forces or collisions, and use these principles to design components that can withstand dynamic loading
	 Analyze the motion of rigid bodies and systems of particles using kinematics and kinetics, solving for parameters such as force, displacement, velocity, and acceleration in dynamic systems.
	 1.7. Apply vibrational analysis to assess natural frequencies, resonance, and damping in mechanical systems, ensuring that components are designed to avoid undesirable vibrations and oscillations. 1.8. Use computational tools (e.g., MATLAB, Simulink)

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

			ANSYS) to solve static and dynamic analysis
			problems through numerical methods, such as
			finite element analysis (FEA) and multibody
			dynamics (MBD).
2.	Solve for forces and motion in mechanical	2.1.	Apply Newton's laws of motion to determine the
	systems.	1	forces acting on bodies within mechanical
	-	9	systems, including translating external forces into
			reactions and solving for unknown forces in static
		(or dynamic conditions.
		2.2.	Use free-body diagrams (FBDs) to visually
			represent forces and moments acting on a
			mechanical system, aiding in the identification of
		(equilibrium and solving for internal and external
		1	forces.
		2.3. 9	Solve static equilibrium problems by applying the
		(equations of equilibrium ($\Sigma F = 0$, $\Sigma M = 0$) to
		9	systems of forces and moments, ensuring that
		9	structures or components remain stationary
		I	under applied loads.
		2.4.	Apply the principles of dynamics to analyze
		1	moving systems, calculating the effects of forces
		(on acceleration, velocity, and displacement of
		1	mechanical components or systems under
		(dynamic loading.
		2.5.	Use kinematic equations to solve problems
		i	involving motion, such as displacement, velocity,
		ä	and acceleration, in both linear and rotational
		1	motion for mechanical systems.
		2.6. /	Apply energy methods, including work-energy and
		(conservation of energy principles, to solve for
		1	forces and motion in systems involving kinetic
		(energy, potential energy, and work done by
		ť	forces.
		2.7.	Use impulse-momentum principles to analyze
			problems involving collisions, impacts, and forces
		ä	acting over short durations, solving for velocities,
		1	forces, and deformations in transient states.
		2.8. 9	Solve for forces and motion in multi-body
		9	systems, using methods such as the method of
		Ņ	virtual work or Lagrangian mechanics to analyze
		(complex mechanical systems with multiple
		i	interacting bodies.

www.ictqualab.co.uk

Page | 17

ME0001 – 6. Introduction to Thermodynamics

The aim of this study unit is to provide learners with a foundational understanding of the basic laws of thermodynamics and their applications in engineering systems. Learners will analyze energy transfer and transformation in mechanical systems, focusing on concepts such as energy conservation, work, heat, and efficiency. This unit is designed to equip learners with the essential thermodynamic principles necessary to assess and optimize the performance of mechanical systems in real-world engineering applications.

Lea	rning Outcome:	Assessment Criteria:
1.	Understand the basic laws of thermodynamics	1.1. Understand the first law of thermodynamics
	and their applications in engineering systems.	(conservation of energy), including how energy is
		transformed in systems, and apply this principle
		to analyze closed and open systems, such as
		engines, refrigerators, and power plants.
		1.2. Comprehend the second law of thermodynamics,
		particularly the concepts of entropy,
		irreversibility, and the direction of energy flow,
		and apply it to assess the efficiency and
		performance of thermodynamic cycles, such as
		1.3 Recognize the concent of thermodynamic
		equilibrium and apply it to understand system
		behavior at different states (e.g., pressure.
		temperature, volume) and the implications of
		reaching equilibrium in mechanical and thermal
		systems.
		1.4. Apply the third law of thermodynamics to
		understand the behavior of systems at absolute
		zero, particularly in relation to material properties
		and the limits of thermodynamic processes.
		1.5. Utilize thermodynamic processes, such as
		isothermal, adiabatic, and polytropic processes, to
		model and solve problems involving the behavior
		applications
		1.6 Analyze thermodynamic cycles including the
		analysis of heat engines, refrigerators, and heat
		pumps, to determine efficiency, work output, and
		energy consumption.
		1.7. Apply the concept of enthalpy and internal energy
		to understand the heat and work interactions in
		thermodynamic processes and systems, solving
		problems related to energy balance and fluid
		flow.

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

		1.8.	Use thermodynamic tables and charts (e.g., steam
			tables, Mollier diagram) to extract relevant
			properties (pressure, temperature, specific
			volume, entropy) for various substances in
			different phases and states.
2.	Analyze energy transfer and transformation in	2.1.	Apply the first law of thermodynamics to analyze
	mechanical systems.		energy conservation in mechanical systems,
			including the calculation of energy inputs,
			outputs, and losses during processes such as
			heating, cooling, and power generation.
		2.2.	Analyze energy transfer in fluid systems,
			considering the conversion between thermal,
			mechanical, and potential energy, particularly in
			devices like pumps, turbines, compressors, and
			heat exchangers.
		2.3.	Investigate heat transfer mechanisms—
			conduction, convection, and radiation—and apply
			these principles to solve energy transfer problems
			in mechanical systems, including thermal
			management in engines, HVAC systems, and
		24	manufacturing processes.
		2.4.	use energy balance equations to model and
			machanical systems, including the calculation of
			efficiency and performance in thermodynamic
			cycles (e.g. Bankine Brayton Carnot)
		25	Apply the second law of thermodynamics to
		2.5.	evaluate the quality of energy transformations.
			understanding the implications of entropy
			generation and its impact on system efficiency
			and sustainability.
		2.6.	Analyze the role of work and heat in energy
			transformations, using work-energy principles to
			calculate work done by or on a system and how
			heat is transferred between system boundaries.
		2.7.	Evaluate energy transformations in mechanical
			systems under various conditions, such as
			constant pressure, temperature, or volume, and
			apply these concepts to design efficient energy
			systems.
		2.8.	Use thermodynamic cycles to assess energy flow
			and transformation, optimizing system
			performance and minimizing energy consumption
			and environmental impact.

ME0001 – 7. Manufacturing Processes

The aim of this study unit is to provide learners with a comprehensive understanding of key manufacturing techniques and their application in the production of mechanical components. Learners will gain knowledge of various processes such as casting, machining, and welding, and understand their implications on material properties, product quality, and cost. This unit is designed to equip learners with the skills to select appropriate manufacturing processes for different mechanical engineering applications, ensuring efficiency, precision, and sustainability in production.

Learning Outcome:	Assessment Criteria:
1. Learn key manufacturing techniques and their	1.1. Understand and apply fundamental
application in the production of mechanical	manufacturing processes such as casting,
components.	machining, welding, and forming, including their
	principles, advantages, limitations, and typical
	applications in mechanical component
	production.
	1.2. Analyze the selection of manufacturing methods
	based on the material properties, desired
	component geometry, and production volume to
	optimize the manufacturing process for cost,
	efficiency, and quality.
	1.3. Develop knowledge of subtractive manufacturing
	techniques (e.g., milling, turning, drilling) and
	their applications in shaping mechanical
	components, including understanding cutting
	tools, tolerances, and surface finishes.
	1.4. Understand additive manufacturing (3D printing)
	and its role in creating complex geometries, rapid
	prototyping, and small-batch production in
	1.5 Learn the principles of cheat metal forming
	rocesses such as stamping bending and deep
	drawing and apply them to design components
	with specific material properties and desired
	shapes.
	1.6. Understand the role of heat treatment processes
	(e.g., annealing, quenching, tempering) in altering
	the mechanical properties of materials to achieve
	specific performance characteristics in
	manufactured parts.
	1.7. Apply welding techniques (e.g., MIG, TIG, arc
	welding) to join components, understanding the
	considerations of heat input, material
	compatibility, and joint design to ensure strength,

					 reliability, and integrity. 1.8. Learn about precision manufacturing techniques such as electrical discharge machining (EDM), laser cutting, and water jet cutting, and their applications in producing high-precision components for mechanical systems. 1.9. Gain knowledge of non-traditional manufacturing processes such as powder metallurgy, extrusion, and injection molding, understanding their specific uses in producing components with
					complex shapes or specific material properties.
2.	Understand processes machining, and welding.	such	as	casting,	 2.1. Demonstrates comprehensive knowledge of the fundamental principles and techniques involved in casting, machining, and welding processes. 2.2. Effectively explains the various methods and types of casting, machining, and welding, including their applications and limitations. 2.3. Identifies and describes the equipment and tools used in casting, machining, and welding processes, with an understanding of their proper maintenance and operation. 2.4. Analyzes the influence of material properties on the selection and execution of casting, machining, and welding techniques. 2.5. Evaluates the safety protocols and risk management strategies specific to casting, machining, and welding operations. 2.6. Applies theoretical knowledge to practical scenarios, demonstrating the ability to select and implement the appropriate process for given tasks. 2.7. Critiques the quality of work produced through casting, machining, and welding, considering factors such as precision, surface finish, and material integrity. 2.8. Demonstrates the ability to troubleshoot common issues and defects that arise during casting, machining, and welding processes. 2.9. Communicates clearly and professionally the technical aspects of casting, machining, and welding processes.

ME0001 -8: Fluid Mechanics

The aim of this study unit is to provide learners with a solid understanding of fluid properties and fluid flow, enabling them to apply fundamental principles of fluid mechanics to solve practical engineering problems. Learners will develop the ability to analyze and model fluid behavior in various systems, such as pipes, ducts, and open channels. This unit is designed to equip learners with the essential tools to address fluid-related challenges in mechanical engineering, optimizing system performance and efficiency.

Lea	arning Outcome:	Assessment Criteria:
1.	Gain an understanding of fluid properties and	1.1. Demonstrates a thorough understanding of
	fluid flow.	the fundamental properties of fluids,
		including density, viscosity, pressure, and
		temperature, and their impact on fluid
		behavior.
		1.2. Explains the principles of fluid statics and
		dynamics, including concepts such as
		buoyancy, pressure gradients, and flow rate.
		1.3. Accurately distinguishes between different
		types of fluid flow, such as laminar and
		turbulent flow, and applies this knowledge to
		real-world scenarios.
		1.4. Analyzes and interprets the relationship
		between fluid properties and flow
		characteristics, including the use of
		appropriate equations and models (e.g.,
		Bernoulli's equation, Reynolds number).
		1.5. Demonstrates the ability to calculate and
		predict fluid flow parameters in both closed
		and open systems, using principles of
		conservation of mass, momentum, and
		1.6 Evaluates the impact of fluid properties on
		angineering applications such as nine design
		numps and heat exchangers
		1.7 Assesses the effects of temperature pressure
		and fluid composition on fluid properties and
		their influence on flow behavior in different
		environments.
		1.8. Utilizes appropriate measurement and
		diagnostic tools to assess fluid flow and
		properties in experimental and industrial
		settings.
		1.9. Communicates technical concepts related to
		fluid properties and flow clearly and

	accurately to diverse audiences.
2. Apply principles of fluid mechanics to practical	2.1. Demonstrates the ability to identify and
engineering problems.	define fluid mechanics problems within
	practical engineering contexts.
	2.2. Applies core fluid mechanics principles, such
	as continuity equation, Bernoulli's principle,
	and the Navier-Stokes equations, to solve
	real-world engineering challenges.
	2.3. Effectively models and analyzes fluid flow
	systems, including both steady and unsteady
	flow conditions, to predict performance and
	behavior.
	2.4. Utilizes appropriate computational methods
	and software tools to simulate fluid dynamics
	and predict system responses.
	2.5. Integrates field inectiance principles with
	thermodynamics structural mechanics) to
	develop comprehensive solutions for complex
	problems.
	2.6. Assesses the impact of factors such as fluid
	viscosity, turbulence, and compressibility on
	system performance and stability in practical
	engineering applications.
	2.7. Evaluates the effectiveness of fluid flow
	systems, including pumps, turbines, and
	piping networks, and recommends
	optimization strategies.
	2.8. Demonstrates the ability to design and size
	fluid systems based on specific performance
	criteria and industry standards.
	2.9. Communicates problem-solving strategies and
	tochnical stakeholders including through
	reports and precentations

Page | 23

ME0001 – 9: Electrical and Electronic Systems for Engineers

The aim of this study unit is to develop learners' understanding of basic electrical circuits and components, focusing on their integration into mechanical engineering applications. Learners will explore the principles of electrical systems, including circuit analysis, power distribution, and control systems, and learn how these systems work in conjunction with mechanical components. This unit is designed to equip learners with the knowledge and skills necessary to design, analyze, and optimize electrical systems in mechanical engineering projects, ensuring effective integration and performance.

Learning Outcome:	Assessment Criteria:
1. Develop an understanding of basic electrical circuits and components.	1.1. Demonstrates a clear understanding of the fundamental concepts of electrical circuits,
	including voltage, current, resistance, and
	power. 1.2. Identifies and explains the basic components
	of electrical circuits, such as resistors,
	capacitors, inductors, diodes, and transistors,
	including their functions and applications.
	1.3. Understands Unit is Law and applies it to calculate voltage current and resistance in
	simple circuits.
	1.4. Analyzes series and parallel circuits,
	calculating total resistance, current, and
	Voltage drops across components. 1.5. Demonstrates knowledge of circuit analysis
	techniques, such as Kirchhoff's voltage and
	current laws, to solve complex circuits.
	1.6. Understands the behavior of electrical circuits
	under different conditions, including the effects of component values on overall circuit
	performance.
	1.7. Utilizes appropriate tools and instruments,
	such as multimeters and oscilloscopes, to
	1.8 Applies knowledge of basic circuit theory to
	troubleshoot and repair simple electrical
	circuits.
	1.9. Communicates electrical circuit concepts and
	written and oral formats.
2 Loove how clockwice wetches are interneted inte	21 Demonstrates on understanding of how
2. Learn now electrical systems are integrated into mechanical engineering applications	2.1. Demonstrates an understanding of how electrical systems interface with mechanical
	systems in various engineering applications.
	2.2. Explains the role of electrical components,

such as motors, sensors, actuators, and
controllers, in mechanical systems.
2.3. Analyzes the integration of electrical power
sources, such as batteries or power supplies,
with mechanical components to enable
system functionality.
2.4. Understands the principles of
electromechanical systems, including the
conversion of electrical energy into
mechanical energy and vice versa.
2.5. Applies knowledge of electrical circuits and
control systems to design, operate, and
optimize electromechanical systems for
specific engineering tasks.
2.6. Demonstrates the ability to troubleshoot and
diagnose issues in integrated electrical and
mechanical systems, identifying the root
cause of failures.
2.7. Assesses the impact of electrical system
integration on the performance, efficiency,
and safety of mechanical systems.
z.o. Othizes industry-standard software and tools
electrical and mechanical systems
2.9 Communicates effectively about the
integration process including technical
specifications and troubleshooting strategies.
to both electrical and mechanical engineering
teams.
-

ME0001 – 10. Engineering Mathematics for Design

The aim of this study unit is to enable learners to apply advanced mathematical methods to solve design challenges in mechanical engineering. Learners will use techniques such as calculus, linear algebra, and differential equations to model and analyze mechanical systems, enhancing their ability to design, optimize, and troubleshoot complex engineering solutions. This unit is designed to provide learners with the mathematical tools necessary to address real-world design problems and improve the efficiency, functionality, and performance of mechanical systems.

Learning Outcome:	Assessment Criteria:
1. Apply mathematical methods to solve design	1.1. Demonstrates proficiency in applying
challenges in mechanical engineering.	mathematical concepts, including algebra,
	calculus, linear algebra, and differential
	equations, to solve mechanical engineering
	design problems.
	1.2. Utilizes mathematical methods to model and
	analyze mechanical systems, accounting for
	forces, moments, material properties, and
	geometric configurations.
	1.3. Effectively applies principles of optimization,
	such as linear programming or numerical
	methods, to design solutions that meet
	performance, cost, and material constraints.
	1.4. Uses mathematical tools to simulate and
	predict the behavior of mechanical systems
	under various loading conditions, including
	static and dynamic analysis.
	1.5. Integrates mathematical techniques with
	and reliable designs for components such as
	structures machines and thermal systems
	1.6. Analyzes and interprets data using statistical
	methods to improve design decisions and
	validate engineering models.
	1.7. Demonstrates the ability to solve complex
	systems of equations that arise in design
	challenges, such as those in kinematics,
	thermodynamics, or fluid dynamics.
	1.8. Applies computational software, such as
	MATLAB, SolidWorks, or ANSYS, to solve
	design problems and optimize mechanical
	systems.
	1.9. Communicates mathematical analysis and
	design solutions clearly, including the

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

	presentation of calculations, assumptions, and conclusions in technical reports.
 Use advanced mathematics to model and analyze mechanical systems. 	 2.1. Demonstrates the ability to apply advanced mathematical methods, including partial differential equations, Fourier transforms, and numerical analysis, to model complex mechanical systems. 2.2. Utilizes advanced techniques such as finite element analysis (FEA) and computational fluid dynamics (CFD) to simulate and predict the behavior of mechanical systems under various conditions. 2.3. Develops and solves mathematical models of mechanical systems, including structural analysis, vibration analysis, and heat transfer problems. 2.4. Applies multivariable calculus and differential equations to analyze dynamic systems, including the behavior of systems subject to oscillations, damping, and resonance. 2.5. Uses matrix methods and linear algebra to solve problems related to system dynamics, including modal analysis and stability analysis of mechanical structures. 2.6. Integrates advanced mathematical methods with physical principles to model real-world engineering problems, such as material deformation, thermal stresses, and fluid-structure interactions. 2.7. Demonstrates proficiency in using computational tools and software (e.g., MATLAB, Mathematica, ANSYS) to solve complex mechanical system models and optimize design parameters. 2.8. Analyzes the accuracy and limitations of mathematical models, validating results through experimental data or comparison with established theoretical frameworks. 2.9. Communicates complex mathematical modeling techniques and results effectively, including presenting assumptions, methodologies, and conclusions in a clear and professional manner.

ME0001 – 11. Mechanical Design Fundamentals

The aim of this study unit is to provide learners with a comprehensive understanding of key principles in mechanical design, including material selection, stress analysis, and the factors that influence design decisions. Learners will develop the skills required to design mechanical components and systems that meet functional requirements, safety standards, and performance criteria. This unit is designed to equip learners with the foundational knowledge and practical tools to approach mechanical design challenges effectively, ensuring the creation of reliable, efficient, and durable engineering solutions.

Learning Outcome:	Assessment Criteria:
1. Understand key principles in mechanical design,	1.1. Demonstrates a thorough understanding of
including material selection and stress analysis.	key principles in mechanical design, including
	functionality, manufacturability, and cost-
	effectiveness, to develop optimal solutions.
	1.2. Explains the importance of material selection
	based on properties such as strength,
	durability, thermal conductivity, and
	corrosion resistance, tailored to specific
	mechanical design requirements.
	1.3. Applies knowledge of stress analysis to
	evaluate the structural integrity of
	components, including understanding of
	normai, snear, and torsional stresses in
	Various loading conditions.
	1.4. Others concepts such as factor of safety, material fatigue, and stress concentration to
	ensure the reliability and longevity of
	mechanical components.
	1.5. Understands the principles of static and
	dynamic loading, and applies appropriate
	analysis methods, such as finite element
	analysis (FEA), to predict the behavior of
	materials under these conditions.
	1.6. Integrates principles of design for
	manufacturability (DFM) and design for
	assembly (DFA) to create designs that are
	both efficient and cost-effective in
	production.
	1.7. Evaluates the effects of environmental
	factors, such as temperature, corrosion, and
	wear, on material performance and
	1.8 Demonstrates the ability to select and apply
	appropriate joining methods (e.g., welding,

	bolting) for mechanical assemblies,
	considering strength, material compatibility,
	and manufacturing constraints.
	1.9. Communicates mechanical design principles
	and decisions clearly, presenting material
	selection criteria, design methodologies, and
	stress analysis results in technical reports.
2. Develop skills in designing components and	2.1. Demonstrates the ability to develop design
systems for mechanical applications.	concepts for mechanical components and
	systems, considering factors such as
	functionality, performance, and user
	requirements.
	2.2. Applies principles of mechanical design,
	including material selection, stress analysis,
	and manufacturing processes, to create
	efficient and reliable components.
	2.3. Utilizes CAD software (e.g., SolidWorks,
	AutoCAD) to design, model, and visualize
	mechanical components and assemblies,
	ensuring accuracy and manufacturability.
	2.4. Incorporates considerations for system
	integration, including how components will
	interact within larger mechanical systems to
	achieve desired outcomes.
	2.5. Demonstrates knowledge of standard
	mechanical components (e.g., bearings, gears,
	fasteners) and applies them appropriately in
	design, ensuring compatibility and reliability.
	design performance such as minimizing
	weight maximizing strength or reducing cost
	while meeting functional requirements
	2.7 Develops prototypes and conducts testing to
	validate design concepts, using experimental
	data to refine and improve designs.
	2.8. Demonstrates an understanding of design for
	manufacturability (DFM), ensuring that
	components are designed to be produced
	efficiently and economically.
	2.9. Communicates design ideas and solutions
	effectively to stakeholders through detailed
	technical drawings, specifications, and
	presentations.

ME0001 – 12. Engineering Project Management

The aim of this study unit is to equip learners with fundamental project management skills tailored to engineering contexts, fostering proficiency in planning, risk assessment, and resource allocation. Through this course, participants will develop the capability to manage engineering projects effectively, ensuring efficient execution, adherence to timelines, and optimal utilization of resources in line with professional and international standards.

Learning Outcome:	Assessment Criteria:
1. Learn basic project management	t skills, including 1.1. Demonstrates an understanding of
planning, risk management,	and resource fundamental project management principles,
allocation.	including the ability to define project scope,
	objectives, and deliverables.
	1.2. Applies project planning techniques, such as
	creating work breakdown structures (WBS),
	defining milestones, and developing project
	schedules using tools like Gantt charts or
	project management software (e.g., Microsoft
	Project).
	1.3. Identifies and evaluates potential risks within
	a project, developing risk management plans
	that include risk assessment, mitigation
	strategies, and contingency plans.
	1.4. Demonstrates the ability to allocate resources
	effectively, ensuring that human, financial,
	and material resources are optimized to meet
	project goals and timelines.
	1.5. Understands the importance of project
	budgeting, including cost estimation, tracking
	expenses, and ensuring the project stays
	within budgetary constraints.
	1.6. Applies principles of quality management,
	ensuring that deliverables meet the required
	standards and that processes are in place for
	quality assurance and control.
	1.7. Communicates project progress and
	challenges effectively to stakeholders tillough
	1.8 Demonstrates leadership and teamwork skills
	collaborating with diverse teams to ensure
	tasks are completed on time and to the
	required specifications
	1.9 Evaluates project performance post-
	completion conducting lessons learned
	reviews and recommending improvements for

	future projects.
2. Understand how to manage engineering projects efficiently.	 2.1. Demonstrates a comprehensive understanding of the entire project lifecycle, from initiation through planning, execution, monitoring, and closure, applying best practices at each stage. 2.2. Applies project management methodologies,
	such as Agile, Waterfall, or Lean, to ensure effective planning, execution, and delivery of engineering projects.
	2.3. Develops and manages detailed project plans, including clear timelines, milestones, and deliverables, to ensure that project goals are met on schedule and within scope.
	2.4. Identifies project risks and uncertainties, applying risk management strategies to minimize potential issues and ensuring the successful delivery of engineering projects.
	2.5. Manages project resources efficiently, including human resources, materials, and equipment, ensuring that the necessary tools and expertise are available to meet project requirements.
	2.6. Utilizes project management software and tools (e.g., MS Project, Primavera, Trello) to track project progress, manage tasks, and allocate resources effectively.
	2.7. Monitors project performance, assessing key metrics such as budget adherence, schedule, and quality, and takes corrective actions when necessary to stay on track.
	2.8. Demonstrates strong communication and leadership skills, ensuring all stakeholders, including team members, clients, and management, are informed of project status and issues
	2.9. Ensures the integration of engineering principles with project management, balancing technical requirements with project constraints such as budget, time, and resources.

ME0001 – 13. Advanced Thermodynamics www.ictqualab.co.uk

The aim of this study unit is to enhance learners' comprehension of advanced thermodynamic principles, focusing on thermodynamic cycles, efficiency, and energy systems. Participants will gain the expertise required to analyze and design complex engineering systems, integrating advanced theoretical knowledge with practical applications to address modern engineering challenges in line with global professional standards.

Learning Outcome:	Assessment Criteria:
1. Deepen your understanding of thermodynamic cycles, efficiency, and energy systems.	1.1. Demonstrates a thorough understanding of thermodynamic cycles, including ideal and
	real cycles such as the Rankine, Brayton, and Otto cycles, and their applications in power
	generation and propulsion systems.
	1.2. Analyzes and compares the performance of different thermodynamic cycles, focusing on
	factors such as efficiency, work output, and
	heat input.
	1.3. Applies the principles of the first and second
	laws of thermodynamics to evaluate energy conversion processes and determine system efficiencies.
	1.4. Calculates and optimizes the efficiency of
	thermodynamic cycles, considering aspects
	like compression, expansion, heat exchange,
	1.5 Understands the concents of entrony
	enthalpy, and internal energy, applying them
	to model and analyze energy systems in
	practical applications.
	1.6. Evaluates and compares the performance of
	energy systems, such as steam turbines, gas
	combustion engines. based on
	thermodynamic principles.
	1.7. Applies exergy analysis to assess the quality of
	energy and identify opportunities for
	improving system efficiency and
	1.8 Demonstrates the ability to use
	thermodynamic tables, Mollier diagrams, and
	software tools (e.g., EES, MATLAB) to analyze
	and design energy systems.
	1.9. Explores emerging technologies and
	innovations in energy systems, including
	power cycles, to improve efficiency and

	reduce environmental impact.
2. Apply advanced thermodynamics in the analysis and design of engineering systems.	2.1. Demonstrates the ability to apply advanced thermodynamic principles, such as exergy analysis, psychrometrics, and phase change processes, to complex engineering systems.
	2.2. Utilizes advanced thermodynamic models and equations to analyze and optimize energy systems, including power plants, refrigeration systems, and HVAC systems.
	2.3. Applies advanced concepts of entropy generation and irreversibility to identify areas for performance improvement and energy savings in engineering designs.
	2.4. Uses computational tools (e.g., MATLAB, Aspen Plus, or EES) to simulate thermodynamic processes and systems, predicting performance under various operating conditions.
	2.5. Analyzes and designs thermodynamic cycles, such as supercritical Rankine cycles, combined cycle systems, or regenerative systems, to improve efficiency and reduce environmental impact.
	2.6. Evaluates and designs heat exchangers, turbines, compressors, and other energy conversion devices, applying principles of heat transfer and fluid dynamics in conjunction with thermodynamics.
	2.7. Integrates thermodynamic principles with other engineering domains (e.g., fluid mechanics, heat transfer, and material science) to design innovative and efficient systems.
	2.8. Applies advanced thermodynamics to the development and optimization of renewable energy systems, such as geothermal, solar thermal, and biomass power plants.
	2.9. Analyzes complex systems involving phase changes, such as refrigeration or distillation processes, and applies thermodynamic principles to enhance system design and performance.

ME0001 – 14. Strength of Materials

The aim of this study unit is to develop learners' ability to analyze the behavior of materials under various loading conditions, focusing on strength, deformation, and failure. Participants will acquire the knowledge and skills to apply fundamental concepts such as stress, strain, and material properties to solve real-world engineering problems, ensuring structural integrity and design efficiency in compliance with international engineering standards.

Learning Outcome:	Assessment Criteria:
1. Analyze the strength and deformation of materials under different loading conditions.	 1.1. Demonstrates a deep understanding of material properties, including stress-strain behavior, elasticity, plasticity, and toughness, and their effects on the strength and deformation of materials under various loading conditions. 1.2. Applies fundamental principles of solid
	mechanics, such as Hooke's Law, to analyze and predict material deformation under axial, torsional, bending, and shear loads.
	stress-strain curves) to assess the material response to complex stress states, including yielding, fracture, and fatigue.
	1.4. Analyzes the effect of loading conditions, such as uniaxial tension, compression, and biaxial or triaxial stress, on the deformation and strength of materials.
	1.5. Applies the concepts of strain energy, resilience, and toughness to evaluate the material's ability to absorb energy before failure under different loading scenarios.
	1.6. Understands and applies failure theories, such as von Mises, Tresca, and maximum normal stress criteria, to predict material failure under complex loading conditions.
	1.7. Uses advanced techniques, such as finite element analysis (FEA), to model and simulate the deformation and stress distribution in materials and structures under various loading conditions.
	1.8. Evaluates the influence of temperature, material defects, and environmental factors (e.g., corrosion, fatigue) on material strength and deformation characteristics.
	1.9. Assesses the impact of time-dependent loading, such as creep, relaxation, and viscoelasticity, on the deformation behavior of materials under sustained loads.

2.	Apply concepts such as stress, strain, and	2.1.	Demonstrates the ability to apply fundamental
	material failure to real-world engineering		concepts of stress, strain, and material failure to
	problems.		analyze and solve real-world engineering
			problems, ensuring that structures and
			components perform safely and efficiently under
			load.
		2.2.	Uses stress-strain relationships to evaluate the
			behavior of materials under different loading
			conditions (e.g., tension, compression, torsion)
			and predict the deformation and failure modes of
			components.
		2.3.	Applies material failure criteria, such as the
			maximum normal stress, von Mises, and Tresca
			fail in real-world applications such as in pressure
			vessels, beams, or machinery.
		2.4.	Integrates knowledge of fatigue, creep, and
			fracture mechanics to assess the long-term
			performance and reliability of materials and
			components subjected to cyclic or time-
			dependent loads.
		2.5.	Analyzes the effects of complex loading
			conditions, such as multi-axial stress states, on
			material behavior and failure, using appropriate
		26	Applies safety factors and design codes to onsure
		2.0.	that materials and components will perform
			reliably under expected operating conditions.
			considering both static and dynamic loads.
		2.7.	Uses advanced tools, such as finite element
			analysis (FEA) or computational methods, to
			model and simulate stress distribution, strain, and
			potential failure in components or systems.
		2.8.	Considers the impact of material properties,
			manufacturing processes, and environmental
			factors (e.g., temperature, corrosion) on the
			components
		2.9	Demonstrates the ability to design and ontimize
			components to prevent material failure. ensuring
			structural integrity while minimizing weight and
			cost in practical engineering applications.
1		1	

ME0001 – 15. Heat Transfer and Fluid Dynamics

The aim of this study unit is to provide learners with a comprehensive understanding of the fundamental principles governing heat transfer and fluid flow in mechanical systems. Participants will develop the analytical and practical skills necessary to apply these concepts to the design, optimization, and problem-solving of complex engineering systems, adhering to professional and international engineering standards.

Learning Outcome:	Assessment Criteria:
1. Understand the mechanisms of heat transfer	1.1. Demonstrates a comprehensive understanding of
and fluid flow in mechanical systems.	the fundamental mechanisms of heat transfer,
	including conduction, convection, and radiation,
	and their relevance in mechanical systems.
	1.2. Applies the principles of thermodynamics and
	fluid mechanics to explain the interaction
	between heat transfer and fluid flow in various
	mechanical applications.
	1.3. Identifies and describes the different modes of
	heat transfer and their effect on system
	performance, including steady-state and transient
	1.4 Analyzes fluid flow behavior distinguishing
	hetween laminar and turbulent flow and annlies
	appropriate models to predict flow patterns in
	pipes, ducts, and other mechanical components.
	1.5. Uses the governing equations for heat transfer
	and fluid flow, such as the Navier-Stokes
	equations, Fourier's Law, and the continuity
	equation, to analyze and solve engineering
	problems.
	1.6. Evaluates the impact of fluid properties,
	temperature gradients, and boundary conditions
	on the efficiency and performance of heat
	exchangers, engines, pumps, and HVAC systems.
	1.7. Utilizes computational tools and software (e.g.,
	ANSYS, MATLAB, FLOENT) to simulate and analyze
	mechanical systems
	1.8 Integrates knowledge of heat transfer and fluid
	flow to design systems for optimal energy
	efficiency, including considerations of material
	properties, system geometry, and operating
	conditions.
	1.9. Communicates complex concepts of heat transfer
	and fluid flow clearly and accurately, presenting
	analyses and solutions to technical and non-
	technical audiences.

2.	Apply these principles to solve complex	2.1.	Demonstrates the ability to apply principles of
	engineering problems.		heat transfer and fluid flow to solve complex,
			real-world engineering problems, considering
			both theoretical and practical aspects.
		2.2.	Uses fundamental equations of heat transfer and
			fluid flow (e.g., Fourier's Law, Bernoulli's
			equation, and the energy equation) to model and
			analyze system behavior in mechanical
			applications.
		2.3.	Effectively combines heat transfer and fluid flow
			principles to optimize system designs for
			performance, energy efficiency, and cost-
			effectiveness in applications such as neat
		24	exchangers, pumps, and engines.
		2.4.	different types of systems, whether steady-state
			or transient, and selects the most suitable
			numerical or analytical techniques to solve for
			system parameters.
		2.5.	Applies computational fluid dynamics (CFD) and
			finite element analysis (FEA) tools to simulate and
			optimize complex heat transfer and fluid flow
			phenomena in mechanical systems.
		2.6.	Integrates knowledge of fluid dynamics,
			thermodynamics, and material properties to
			troubleshoot, refine, and improve mechanical
			systems facing heat and fluid flow-related
		2 7	challenges.
		2.7.	Assesses the impact of environmental conditions
			(e.g., temperature, pressure, and now rates) and
			and fluid flow behavior
		2.8.	Demonstrates the ability to conduct sensitivity
			analysis, considering variables such as material
			selection, system design, and operational factors,
			to identify the most effective solutions to
			engineering challenges.
		2.9.	Communicates the results of complex analyses
			clearly, presenting findings, recommendations,
			and solutions in a structured and professional
			manner, supported by data, simulations, and
			relevant calculations.

ME0001 – 16. Advanced Manufacturing Techniques

The aim of this study unit is to provide learners with in-depth knowledge of advanced manufacturing methods, including CNC machining, additive manufacturing, and robotics. Participants will explore the capabilities, applications, advantages, and limitations of these techniques, equipping them with the expertise to implement innovative manufacturing solutions in industrial settings, aligned with global standards and emerging trends.

Learning Outcome:	Assessment Criteria:
1. Learn advanced manufacturing methods, such as	1.1. Demonstrates a strong understanding of
CNC machining, additive manufacturing, and robotics	advanced manufacturing methods, including CNC machining, additive manufacturing (3D printing)
	and robotics and their applications in modern
	engineering practices
	1.2. Explains the principles, processes, and benefits
	of CNC machining, including its ability to produce
	high-precision components using numerical
	control programming and automated tools.
	1.3. Understands the various types of additive
	manufacturing techniques, such as FDM, SLA,
	and SLS, and their appropriate applications for
	prototyping and production of complex
	geometries.
	1.4. Analyzes the advantages and limitations of each
	manufacturing method, such as material
	constraints, build time, surface finish, and design
	complexity, in relation to specific engineering
	requirements.
	1.5. Applies knowledge of computer-aided design
	(CAD) and computer-aided manufacturing (CAM)
	software to create and optimize designs for CNC
	machines and additive manufacturing systems.
	1.6. Demonstrates the ability to program and operate
	CNC machines, including setting up tools,
	selecting machining parameters, and ensuring
	1.7 Understands the role of robotics in automation
	1.7. Olderstands the fole of fobotics in automation,
	assembly systems and applies this knowledge to
	improve manufacturing efficiency and quality
	control
	1.8. Assesses the impact of advanced manufacturing
	techniques on sustainability. cost efficiency, and
	material waste reduction in manufacturing
	processes.
	1.9. Communicates effectively about advanced
	manufacturing methods, including technical

			specifications, process flows, and quality control
			measures, in both written and verbal formats.
2	Understand the advantages and limitations of	2.1	Demonstrator a comprehensive understanding of
Ζ.	these techniques in industry	2.1.	the advantages of advanced manufacturing
	these techniques in muustiy.		tochniques such as increased precision flexibility
			and automation and their impact on product
			and automation, and then impact on product
		2.2	Analyzes the limitations of CNC machining such
		2.2.	as the high setup sects tool wear and material
			waste and applies strategies to mitigate these
			challenges in industrial applications
		23	Understands the benefits of additive
		2.5.	manufacturing including the ability to create
			complex geometries rapid prototyping and
			reduced material waste and identifies scenarios
			where these advantages offer significant value in
			production.
		2.4.	Evaluates the limitations of additive
			manufacturing, such as material constraints,
			slower production times for large-scale runs, and
			surface finish quality, and applies this
			understanding to determine appropriate
			applications in industry.
		2.5.	Assesses the role of robotics in enhancing
			manufacturing efficiency, accuracy, and
			repeatability, while considering limitations such as
			high initial costs, maintenance requirements, and
			the need for specialized programming skills.
		2.6.	Identifies situations where traditional
			manufacturing methods, such as injection
			molding or casting, may still be more cost-
			effective or practical compared to advanced
			techniques.
		2.7.	Evaluates the environmental impact of each
			manufacturing method, considering factors such
			as energy consumption, material usage, and
			recyclability, to support sustainable
		20	manufacturing practices.
		∠.ŏ.	various advanced manufacturing techniques to
			determine the most suitable approach based on
			production volume part complexity and market
			demands.

ME0001 – 17. Mechanical Vibrations and Acoustics www.ictqualab.co.uk

The aim of this study unit is to equip learners with advanced knowledge and analytical skills in mechanical vibrations and acoustics. Participants will explore the dynamics of vibration and resonance in engineering systems and apply acoustic principles to develop effective solutions for noise and vibration control, ensuring optimal mechanical design performance in line with international engineering standards.

Learning Outcome:	Assessment Criteria:
1. Analyze mechanical vibrations and resonance in	1.1. Demonstrates a thorough understanding of the
engineering systems.	fundamental concepts of mechanical vibrations,
	including types of vibrations (free and forced) and
	the factors influencing vibration behavior in
	engineering systems.
	1.2. Applies the principles of mass-spring-damper
	systems to analyze the dynamic response of
	components under varying forces, including
	natural frequencies, damping ratios, and
	resonance conditions.
	1.3. Utilizes the theory of harmonic motion to predict
	the behavior of vibrating systems and determines
	the resonance frequencies of structures or
	machines that could lead to failure or
	performance degradation.
	1.4. Analyzes and calculates the modes of vibration in
	complex mechanical systems, such as beams,
	snafts, and rotating machinery, using modal
	analysis of computational tools.
	1.5. Uses vibration analysis techniques to assess the
	or environmental conditions, on the stability and
	reliability of engineering systems
	1.6 Identifies notential resonance issues in
	mechanical systems and applies strategies to
	avoid or mitigate resonance, such as tuning.
	damping, or altering system stiffness.
	1.7. Applies methods for vibration measurement and
	monitoring, including accelerometers, strain
	gauges, and vibration analyzers, to collect data for
	analysis and system optimization.
	1.8. Demonstrates the ability to model and simulate
	the vibrational behavior of mechanical systems
	using computational tools (e.g., MATLAB, ANSYS,
	or Abaqus) to predict performance under dynamic
	loading conditions.
	1.9. Communicates the results of vibration analysis
	clearly, presenting findings and recommending

			design modifications or operational changes to
			enhance system stability and prevent damage due
			to resonance
2.	Apply principles of acoustics to control noise and	2.1.	Demonstrates a solid understanding of acoustics
	vibration in mechanical designs.		principles, including sound wave propagation,
			frequency, amplitude, and the relationship
			between noise and vibration in mechanical
			systems.
		2.2.	Applies acoustic theory to design noise and
			vibration control strategies for mechanical
			systems, such as isolating sources of sound,
			damping vibrations, and reducing sound
			transmission through materials or structures.
		2.3.	Uses materials with specific acoustic properties
			(e.g., soundproofing, vibration damping) to
			reduce noise levels and enhance the overall
			performance of mechanical designs in
			environments such as machinery, automotive,
			and HVAC systems.
		2.4.	Identifies sources of noise and vibration in
			mechanical systems and applies principles of
			passive and active control, such as vibration
			isolators, absorbers, and acoustic enclosures, to
			mitigate unwanted sound.
		2.5.	Utilizes computational tools to model and analyze
			noise and vibration levels, predicting acoustic
			benavior in complex systems and optimizing
		20	designs for noise reduction.
		2.6.	response and response in poice and vibration
			control, and designs mechanical systems to avoid
			resonance and minimize the impact of harmonic
			frequencies
		27	Implements regulatory standards industry
		2.7.	guidelines and best practices in poise and
			vibration control ensuring compliance with
			environmental and workplace safety
			requirements.
		2.8.	Demonstrates the ability to measure and analyze
			noise and vibration levels using appropriate
			instruments, such as sound level meters, vibration
			sensors, and acoustic analyzers, to verify the
			effectiveness of control measures.

The aim of this study unit is to provide learners with a thorough understanding of the behavior of dynamic systems and the application of control theory for system stabilization. Participants will develop the ability to model, analyze, and control mechanical systems to optimize performance, ensuring reliability and efficiency in alignment with global engineering practices and standards.

Learning Outcome:	Assessment Criteria:
1. Understand the behavior of dynamic systems	1.1. Demonstrates a thorough understanding of the
and apply control theory to stabilize mechanical	behavior of dynamic systems, including system
systems.	response to inputs, stability analysis, and the role
	of feedback in controlling mechanical systems.
	1.2. Applies principles of classical control theory,
	such as open-loop and closed-loop control,
	transfer functions, and feedback mechanisms, to
	analyze and design control systems for
	mechanical applications.
	1.3. Analyzes the stability of dynamic systems using
	techniques such as root locus, Bode plots, and
	Nyquist criteria to evaluate system performance
	under various operating conditions.
	1.4. Understands the impact of damping, inertia, and
	system nonlinearities on system behavior and
	applies appropriate control strategies to mitigate
	undesirable effects such as oscillations and
	instability.
	1.5. Utilizes control algorithms, such as PID
	(Proportional-Integral-Derivative) control, to
	design controllers that improve the
	performance, accuracy, and stability of
	mechanical systems.
	1.6. Applies modern control techniques, such as
	state-space analysis and optimal control, to
	analyze and design systems with multiple
	variables and complex dynamics.
	1.7. Simulates the behavior of dynamic systems and
	control strategies using computational tools to
	antimize controller parameters
	1.8 Implements concor foodback systems and
	actuators to ensure real time system
	adjustments achieving desired performance in
	mechanical systems such as robotics, automotive
	suspension systems or manufacturing
	equinment
	1.9 Evaluates the performance of controlled systems

	under transient and steady-state conditions,
	ensuring that system outputs meet specified
	criteria such as stability, accuracy, and response
	time.
2. Model and control mechanical systems to	2.1. Demonstrates the ability to model mechanical
optimize performance.	systems, including defining system dynamics,
- F	creating mathematical models and incorporating
	system components such as actuators sensors
	and controllers.
	2.2. Applies principles of system identification to
	develop accurate models of mechanical systems
	based on experimental data, system
	specifications, or physical laws.
	2.3. Utilizes computational tools (e.g., MATLAB,
	Simulink, or Adams) to simulate and analyze the
	behavior of mechanical systems, assessing system
	response to various inputs and disturbances.
	2.4. Applies control strategies, such as PID, state-
	space, or robust control, to optimize system
	performance by minimizing errors, improving
	stability, and achieving desired system outputs.
	2.5. Understands and applies optimization techniques,
	such as genetic algorithms or linear programming,
	to fine-tune control parameters and enhance the
	performance of mechanical systems.
	2.6. Integrates feedback mechanisms and sensors into
	system models to adjust real-time behavior,
	improving dynamic performance and ensuring
	system stability under varying operating
	conditions.
	2.7. Evaluates the impact of control system design on
	performance metrics such as accuracy, speed,
	efficiency, and energy consumption, applying
	methods to optimize these factors.
	2.8. Implements model-based control techniques,
	such as Model Predictive Control (MPC), to
	anticipate system behavior and make proactive
	adjustments for enhanced performance.
	2.9. Tests and validates models and control systems
	through experimentation, real-world testing, and
	simulation, ensuring that the designed system
	meets specified design criteria and real-world
	performance expectations.

ME0001 – 19. Design and Analysis of Machine Elements

The aim of this study unit is to develop learners' expertise in the design and analysis of critical machine elements, including gears, shafts, and bearings. Participants will gain a deep understanding of the principles governing their operation and performance, enabling them to create efficient, reliable, and robust mechanical designs that meet international engineering standards.

Learning Outcome:	Assessment Criteria:
1. Design and analyze machine elements such as	1.1. Demonstrates a comprehensive understanding of
gears, shafts, and bearings.	the design principles for machine elements,
	including gears, shafts, bearings, and other key
	components used in mechanical systems.
	1.2. Applies principles of kinematics, dynamics, and
	material science to design machine elements that
	safety requirements under various load
	conditions.
	1.3. Uses standard design equations and analytical
	methods to calculate key parameters such as gear
	ratios, shaft diameters, bearing capacities, and
	torque transmission capabilities.
	1.4. Analyzes the load distribution, stress, and
	deformation in machine elements, considering
	thermal effects to ensure reliability and longevity
	1.5. Applies appropriate design criteria and standards
	(e.g., ISO, ANSI, AGMA) to ensure the proper
	selection of materials, tolerances, and surface
	treatments for gears, shafts, and bearings.
	1.6. Utilizes advanced simulation tools (e.g., FEA,
	MATLAB, or SolidWorks) to model and analyze the
	performance of machine elements under various
	operating conditions, identifying potential failure
	1.7. Incorporates considerations for lubrication
	clearance, and alignment in bearing design to
	reduce friction, wear, and heat generation in
	mechanical systems.
	1.8. Optimizes gear design by selecting the correct
	type (e.g., spur, helical, bevel) and configuration
	to minimize noise, wear, and backlash while
	maximizing power transmission efficiency.
	fatigue wear and lubrication to ensure machine
	elements function under expected load cycles and
	environmental conditions.

2.	Understand the principles	that	govern	their	2.1. Demonstrates a deep understanding of the
	operation and performance.		0		fundamental principles that govern the operation
					of machine elements such as gears, shafts, and
					bearings, including the mechanics of motion, load
					distribution, and material behavior.
					2.2. Understands the role of kinematics in gear
					operation, including the relationship between
					gear teeth, rotational speed, and torque
					transmission, and how gear ratios influence
					system performance.
					2.3. Applies principles of dynamics to analyze the
					forces, stresses, and vibrations acting on shafts
					and bearings, ensuring their stability, durability,
					and efficient operation under various load
					conditions.
					2.4. Demonstrates knowledge of friction, lubrication,
					and wear mechanisms in bearings, understanding
					how factors like material selection, surface
					roughness, and lubricant properties affect
					performance and longevity.
					2.5. Understands the principles of load transmission in
					shafts, including torsion, bending, and axial
					forces, and how these forces impact shaft design,
					material selection, and the need for support
					bearings.
					2.6. Explains the concepts of power loss, efficiency,
					and backlash in gear systems, and how these
					factors influence the performance of mechanical
					drives.
					2.7. Understands the effects of thermal expansion,
					temperature variations, and environmental
					actors on the performance of machine elements,
					especially in high-load of high-speed applications.
					z.o. Applies principles of fatigue and material strength
					under cyclic loading ensuring that they can
					withstand operational stresses without failure
					2.9. Demonstrates knowledge of the failure modes of
					machine elements, including nitting wear
					fretting, and fatigue, and understands how these
					failures affect the overall system performance
					and reliability.
					,

ME0001 – 20. Control Systems for Mechanical Engineering

The aim of this study unit is to equip learners with the knowledge and skills to apply control theory to mechanical systems, focusing on feedback control, system stability, and performance optimization. Participants will learn to design and implement control systems that ensure efficient and reliable operation of mechanical processes, adhering to professional and international engineering standards.

Learning Outcome:	Assessment Criteria:
1. Apply control theory to mechanical systems,	1.1. Demonstrates a strong understanding of control
including feedback control and system stability.	loops, stability, and dynamic response, and applies these principles to analyze and design
	mechanical systems.
	1.2. Utilizes mathematical models, such as transfer
	describe the behavior of mechanical systems and
	predict system response to inputs.
	1.3. Applies feedback control techniques, such as PID
	(Proportional-Integral-Derivative) control, to
	regulate mechanical system parameters like
	position, velocity, and force, ensuring optimal
	performance and stability.
	1.4. Analyzes system stability using tools like the Bouth-Hurwitz criterion. Nyquist criterion and
	Bode plots to determine system behavior under
	different operating conditions and design for
	stability margins.
	1.5. Designs controllers to achieve desired system
	responses, considering trade-offs between
	stability, accuracy, speed of response, and
	uncertainties.
	1.6. Understands and applies concepts such as pole-
	zero placement, root locus, and frequency
	response to improve the performance of
	mechanical systems, minimizing oscillations and steady-state errors.
	1.7. Applies modern control methods, such as optimal
	control or robust control, to handle more complex
	systems with multiple inputs and outputs,
	ensuring system performance even under varying
	conditions.
	1.0. Simulates the dynamic behavior of mechanical systems and control algorithms using
	computational tools (e.g., MATLAB, Simulink) to
	evaluate and optimize control system design

		before implementation.
		1.9. Implements control strategies in real-time
		systems, incorporating sensors, actuators, and
		feedback loops to ensure that mechanical systems
		maintain desired operational parameters and
		adapt to disturbances.
2.	Design control systems for efficient mechanical	2.1. Identify the requirements of mechanical
	operations.	systems to determine appropriate control
		strategies and objectives.
		2.2. Select suitable control system components
		(e.g., sensors, actuators, controllers) based on
		system specifications and operational needs.
		2.3. Develop mathematical models representing
		the mechanical system's dynamics and
		control requirements.
		2.4. Design control algorithms (e.g., PID, adaptive,
		or predictive) tailored to the mechanical
		system's performance goals.
		2.5. Implement and simulate control systems
		using software tools to test and validate
		performance under different operating
		conditions.
		2.6. Optimize control parameters to improve
		efficiency, stability, and responsiveness of
		mechanical operations.
		2.7. Analyze system performance, identify
		potential issues (e.g., instability, oscillations),
		and make design adjustments as needed.
		2.8. Integrate control systems with mechanical
		hardware and ensure proper communication
		between components for seamless operation.
		2.9. Document the control system design process,
		including design decisions, simulations, and
		results, for future reference and
		troubleshooting.

Page | 47

ME0001 – 21. Engineering Materials and Failure Analysis

The aim of this study unit is to provide learners with a comprehensive understanding of material failure modes, including fatigue, fracture, and corrosion. Participants will gain practical knowledge in failure analysis techniques, enabling them to assess and improve the reliability of mechanical systems and components, ensuring their durability and performance in line with global engineering standards.

Learning Outcome:	Assessment Criteria:
1. Investigate material failure modes, including	1.1. Identify and categorize different material
fatigue, fracture, and corrosion.	failure modes, such as fatigue, fracture, and
	corrosion, in relation to mechanical systems
	and structures.
	1.2. Analyze the underlying mechanisms of each
	failure mode, including material properties,
	loading conditions, and environmental
	factors.
	1.3. Conduct experiments or simulations to assess
	the impact of cyclic loading, stress
	concentrations, and environmental exposure
	on material performance.
	1.4. Evaluate material behavior under unterent
	notential fracture initiation points
	1.5 Investigate the effects of corrosive
	environments (e.g., chemical exposure,
	moisture, temperature) on material integrity
	and performance.
	1.6. Use non-destructive testing (NDT) methods to
	detect and assess the extent of material
	damage, including cracks, corrosion, and
	other signs of failure.
	1.7. Analyze fracture surfaces to determine the
	mode of fracture (e.g., brittle, ductile) and
	correlate it with material properties and
	service conditions.
	1.8. Apply failure analysis techniques to diagnose
	recommend corrective actions or material
	renlacements
	1.9. Design and implement preventive measures
	(e.g., material selection, coating, protective
	systems) to minimize the risk of fatigue.
	fracture, and corrosion.
2 Apply failure analysis tasksings to improve	2.1. Salaat annranriata failura analusia tashairura
2. Apply failure analysis techniques to improve	2.1. Select appropriate failure analysis techniques

mechanical system reliability.	(e.g., root cause analysis, fracture mechanics,
	statistical analysis) based on the type of
	mechanical system and failure mode.
	2.2. Collect and examine relevant data, such as
	operating conditions, material properties, and
	environmental factors, to identify potential
	failure causes.
	2.3. Conduct visual inspections, non-destructive
	testing (NDT), and microscopic analysis to
	detect signs of wear, cracks, or other damage
	in mechanical components.
	2.4. Perform fatigue analysis to evaluate the
	effects of cyclic loading on component
	lifespan and identify potential failure points.
	2.5. Use failure modes and effects analysis (FMEA)
	to assess the impact of different failure
	modes on system performance and prioritize
	risk mitigation efforts.
	2.6. Analyze failure patterns and trends over time
	to predict potential system weaknesses and
	proactively address reliability issues.
	2.7. Investigate the material behavior under
	scress, temperature, and environmental
	system reliability
	2.8 Recommend design modifications material
	substitutions or process improvements to
	address identified failure causes and enhance
	system durability.
	2.9. Develop and implement monitoring and
	maintenance strategies based on failure
	analysis results to reduce the likelihood of
	future failures.

Page | 49

ME0001 – 22. Computer-Aided Engineering (CAE)

The aim of this study unit is to develop learners' proficiency in using Computer-Aided Engineering (CAE) tools for simulation and design validation. Participants will gain expertise in applying Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) to optimize mechanical design, ensuring accurate performance predictions and enhancing design efficiency in alignment with international engineering standards.

Lear	ning Outcome:	Assessment Criteria:
1.	Develop skills in using CAE tools for simulation and design validation.	 1.1. Select and familiarize with appropriate Computer-Aided Engineering (CAE) tools based on the simulation and design validation needs of the project. 1.2. Develop proficiency in using CAE software for simulating mechanical behaviors such as stress, strain, deformation, and thermal performance
		1.3. Set up accurate models in CAE tools by defining material properties, boundary conditions, loads, and constraints relevant to the design.
		1.4. Perform simulations to validate mechanical designs against real-world conditions and operational requirements.
		 1.5. Interpret simulation results effectively, identifying areas of concern such as stress concentrations, deformation, or potential failure points.
		1.6. Use optimization algorithms within CAE tools to refine design parameters for enhanced performance, efficiency, and reliability.
		 1.7. Conduct sensitivity analysis to evaluate the impact of varying design parameters on overall system behavior and performance.
		1.8. Validate simulation results through comparison with experimental or theoretical data to ensure model accuracy.
		1.9. Integrate CAE tools with other design software to streamline the overall product development and validation process.
2.	Apply Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) in mechanical design.	2.1. Demonstrate the ability to select appropriate FEA and CFD tools for mechanical design based on project requirements.
	U	2.2. Effectively set up and define material properties, boundary conditions, and load

www.ictqualab.co.uk

Page | 50

cases in FEA and CFD simulations.
2.3. Apply FEA to analyze structural integrity,
stress distribution, and deformation in
mechanical components.
2.4. Use CFD to model and analyze fluid flow, heat
transfer, and pressure distribution in
mechanical systems.
2.5. Interpret the results from FEA and CFD
simulations to make informed decisions on
design modifications.
2.6. Validate simulation results through
comparison with experimental or real-world
data to ensure accuracy and reliability.
2.7. Identify potential areas of design failure and
recommend optimization strategies based on
FEA and CFD findings.
2.8. Demonstrate proficiency in post-processing of
FEA and CFD data to create clear and
actionable reports for stakeholders.
2.9. Adhere to industry standards and best
practices in FEA and CFD modeling and
analysis to ensure compliance with relevant
engineering codes.

ME0001 – 23. Mechanical System Design

The aim of this study unit is to equip learners with the skills to design and optimize mechanical systems, balancing performance, safety, and cost-effectiveness. Participants will develop the ability to address complex engineering challenges in system-level design, ensuring efficient, reliable, and economical solutions in accordance with global engineering standards.

Learning Outcome:	Assessment Criteria:
 Design and optimize mechanical systems considering factors such as performance, safety, and cost. 	 1.1. Identify key performance requirements and safety standards relevant to the mechanical system design.
	1.2. Evaluate and balance design trade-offs between performance, safety, and cost, ensuring that all factors are properly considered
	1.3. Select appropriate materials, components, and manufacturing processes that align with performance, safety, and cost objectives.
	 Apply optimization techniques to enhance system performance while minimizing costs without compromising safety.
	1.5. Perform risk assessments to identify potential safety hazards in mechanical system designs and implement mitigation strategies.
	1.6. Use design tools and software to simulate system performance and predict outcomes under various conditions.
	1.7. Ensure compliance with relevant industry standards, regulations, and safety guidelines throughout the design process.
	1.8. Continuously evaluate design solutions and make necessary adjustments to improve efficiency, reliability, and cost-effectiveness
	1.9. Document design decisions and optimization strategies clearly, providing detailed reports for stakeholders and future reference.
2. Solve engineering challenges in system-level design.	2.1. Analyze the system-level design problem by identifying key constraints, requirements, and objectives.
	2.2. Apply engineering principles and methodologies to break down complex design challenges into manageable subcomponents.
	2.3. Evaluate available technologies, tools, and materials to select the most appropriate

solutions for the system-level design.
2.4. Use simulation and modeling techniques to predict system behavior and performance under various operating conditions.
2.5. Integrate different subsystems and components, ensuring compatibility and optimizing overall system performance.
2.6. Address potential issues related to reliability, manufacturability, and scalability within the system design.
2.7. Collaborate with cross-functional teams to gather insights and integrate diverse expertise into the solution.
2.8. Propose and evaluate multiple design alternatives, selecting the optimal solution based on technical and practical considerations.
2.9. Document the problem-solving process, including design rationale, trade-offs, and final decisions for transparency and future reference.

ME0001 – 24. Project Planning and Cost Estimation

The aim of this study unit is to provide learners with essential techniques for estimating costs and planning engineering projects. Participants will develop the skills needed to manage project timelines, budgets, and resources effectively, ensuring the successful delivery of projects within scope, time, and financial constraints in accordance with professional and international standards.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Learn techniques for estimating costs and planning engineering projects.	 Assessment Criteria: 1.1. Understand and apply various cost estimation techniques, including analogous, parametric, and bottom-up methods, to accurately forecast project expenses. 1.2. Break down engineering projects into phases, tasks, and resources, ensuring comprehensive cost planning and scheduling. 1.3. Identify and account for direct and indirect costs, including labor, materials, equipment, and overheads, in project estimates. 1.4. Use project management tools and software to create detailed project timelines, milestones, and resource allocation plans. 1.5. Consider risk factors and uncertainties in cost estimations, applying contingency planning where necessary. 1.6. Analyze historical data and industry benchmarks to improve the accuracy of cost predictions. 1.7. Develop a clear and realistic project budget, ensuring alignment with project scope, schedule, and resource availability. 1.8. Monitor and track project costs throughout the lifecycle, identifying deviations from the
	the lifecycle, identifying deviations from the plan and implementing corrective actions as required.
	1.9. Communicate cost estimates, budgets, and progress reports effectively to stakeholders, ensuring transparency and informed decision- making.
2. Develop the ability to manage project timelines,	2.1. Create detailed project plans with clear
budgets, and resources effectively.	timelines, milestones, and deliverables,
	ensuring alignment with project objectives.
	2.2. Develop and allocate resources efficiently,
	considering personnel, equipment, and materials required for project completion.

2.3. Establish realistic budgets by identifying cost
drivers and incorporating contingency plans
to account for potential risks.
2.4. Monitor project progress regularly, comparing
actual performance against planned timelines
and budgets, and take corrective actions
when necessary.
2.5. Implement project management software and
tools to track resources, timelines, and
expenditures for optimal project control.
2.6. Communicate project status to stakeholders
through regular reports, ensuring
transparency and facilitating informed
decision-making.
2.7. Prioritize tasks and resources effectively,
ensuring critical path activities are completed
on schedule and within budget.
2.8. Identify potential bottlenecks and resource
constraints early, proactively addressing
issues to prevent project delays.
2.9. Ensure that all project phases adhere to
quality standards and regulatory
requirements while staying within time and
cost constraints.

ME0001 – 25. Advanced Mechanical System Design

The aim of this study unit is to enable learners to apply advanced design techniques in the creation of complex mechanical systems. Participants will integrate optimization methods to enhance system performance, efficiency, and functionality, ensuring that designs meet high engineering standards and address real-world challenges effectively.

Learning Outcome:	Assessment Criteria:
1. Apply advanced design techniques to create complex mechanical systems.	 1.1. Utilize advanced design principles and methodologies, such as parametric design, generative design, and multi-objective optimization, to create complex mechanical systems. 1.2. Select and integrate advanced materials,
	components, and manufacturing techniques that align with the functional and performance requirements of the system.
	 1.3. Use sophisticated simulation tools (e.g., FEA, CFD) to evaluate and refine design concepts, ensuring the system's performance, durability, and efficiency.
	1.4. Apply principles of system-level thinking to ensure all components work harmoniously and achieve the desired objectives.
	1.5. Employ design for manufacturability (DFM) and design for assembly (DFA) principles to optimize the system for production and cost- efficiency.
	 1.6. Implement advanced CAD software to create detailed, accurate 3D models and prototypes of complex mechanical systems.
	 1.7. Incorporate automation, robotics, or mechatronics in system design to improve functionality and efficiency where applicable.
	1.8. Analyze the impact of environmental factors, including thermal, mechanical, and fluidic interactions, on the overall system design.
	1.9. Validate and test design concepts through physical prototyping or virtual testing, ensuring they meet the required specifications and performance criteria.
2. Incorporate optimization methods to improve system performance and efficiency.	2.1. Identify key performance indicators (KPIs) for the system and define objectives for optimization, such as efficiency, cost

1
reduction, or reliability.
2.2. Apply optimization techniques such as linear
programming, genetic algorithms, or particle
swarm optimization to improve system
performance.
2.3. Use simulation and modeling tools to
evaluate different design iterations and assess
their impact on system efficiency and
performance.
2.4. Integrate trade-off analysis to balance
competing objectives, such as performance
versus cost or efficiency versus complexity.
2.5. Implement design modifications based on
optimization results to enhance system
functionality while maintaining or reducing
costs.
2.6. Use sensitivity analysis to identify critical
factors influencing system performance and
focus optimization efforts on these areas.
2.7. Incorporate feedback loops from real-world
data or testing to continuously refine and
optimize the system over time.
2.8. Evaluate the system's lifecycle performance,
ensuring that optimizations are sustainable
and cost-effective throughout its operational
life.
2.9. Collaborate with multidisciplinary teams to
apply diverse optimization strategies,
ensuring that all aspects of the system are
considered for holistic improvement.
,

ME0001 – 26. Energy Systems and Sustainability

The aim of this study unit is to provide learners with a comprehensive understanding of renewable energy systems and sustainable design practices within mechanical engineering. Participants will develop the ability to design energy-efficient systems that reduce environmental impact, promoting sustainability and adhering to global standards for environmentally responsible engineering solutions.

Learning Outcome:			Assessment Criteria:
1. Study renewable	energy	systems and	1.1. Analyze the principles and technologies
sustainable design	practices	in mechanical	behind various renewable energy sources,
engineering.			including solar, wind, hydro, and geothermal,
			and their application in mechanical
			engineering systems.
			1.2. Evaluate the environmental impact of
			different energy systems, focusing on carbon
			emissions, resource depletion, and
			sustainability metrics.
			1.3. Study energy conversion technologies, such as
			photovoltaic cells, wind turbines, and
			bioenergy systems, to understand their
			integration into mechanical designs.
			1.4. Apply sustainable design practices, such as
			energy-efficient system components, low-
			impact materials, and waste reduction
			strategies, in mechanical engineering projects.
			1.5. Integrate renewable energy sources into
			mechanical system designs, optimizing for
			efficiency, cost-effectiveness, and
			environmental benefits.
			1.6. Use simulation and modeling tools to assess
			the reasibility and performance of renewable
			1.7 Stav informed on industry trends, government
			1.7. Stay informed on industry trends, government
			repowable operative technologies and
			sustainable design practices
			1.8 Incorporate life-cycle analysis (ICA) to
			evaluate the long-term environmental and
			economic impacts of renewable energy
			systems
			1.9. Design mechanical systems that support
			the transition to a low-carbon, sustainable
			energy future while maintaining system
			reliability and performance
			 1.8. Incorporate life-cycle analysis (LCA) to evaluate the long-term environmental and economic impacts of renewable energy systems. 1.9. Design mechanical systems that support the transition to a low-carbon, sustainable energy future while maintaining system reliability and performance

2. Des	ign energy-efficient	systems that minim	ze 2.1. Apply principles of thermodynamics,	fluid
env	ironmental impact.		mechanics, and heat transfer to de	sign
			systems that optimize energy use	and
			minimize waste.	
			2.2. Select energy-efficient compone	ents,
			materials, and technologies that rec	luce
			energy consumption without compromi	sing
			system performance.	
			2.3. Integrate renewable energy sources, suc	h as
			solar or wind power, into designs to rec	Juce
			reliance on tossil tuels and ic	wer
			2.4 Utilize advanced simulation and mode	aling
			tools to evaluate energy flow and ontin	mize
			system design for maximum efficiency	mze
			2.5. Incorporate energy recovery and waste	heat
			utilization techniques to enhance sys	tem
			efficiency and reduce overall energy dema	nd.
			2.6. Design systems with low emissions	and
			minimal environmental footprint, ensu	iring
			compliance with sustainability standards	and
			regulations.	
			2.7. Implement smart technologies, such	as
			energy management systems and sensors	s, to
			monitor and optimize energy usage in i	real-
			time.	ta
			2.8. Perform me-cycle assessments (LCA)	l0 Intal
			impacts of design choices ensu	iring
			sustainable operation and maintenance.	
			2.9. Prioritize eco-friendly design pract	ices.
			including material selection, recyclability.	and
			reducing the carbon footprint of produc	tion
			and operation.	

Page | 59

ME0001 – 27. Advanced CAD and 3D Modeling

The aim of this study unit is to equip learners with advanced skills in CAD software for the 3D modeling and simulation of mechanical systems. Participants will gain the expertise needed to create detailed models and prototypes, enhancing the accuracy, functionality, and efficiency of engineering designs in alignment with industry standards.

Learning Outcome: A	ssessment Criteria:
1. Master advanced CAD software for 3D modeling	1.1. Attain advanced proficiency in CAD software
and simulation of mechanical systems.	(e.g., SolidWorks, CATIA, AutoCAD) to develop
	highly detailed and precise 3D models of
	complex mechanical systems.
	1.2. Leverage parametric and feature-based
	design methodologies to efficiently adapt and
	modify models in response to evolving design
	specifications.
	1.3. Utilize integrated simulation tools within CAD
	platforms, such as structural, thermal, and
	motion analysis, to accurately predict system
	performance under operational conditions.
	1.4. Develop expertise in assembling and
	seamless integration and functionality of
	mechanical components
	1.5. Produce comprehensive technical drawings
	incorporating precise dimensions, tolerances,
	and material specifications, in compliance
	with international engineering standards.
	1.6. Apply design for manufacturability and
	assembly (DFMA) principles within CAD
	environments to assess and optimize designs
	for production feasibility.
	1.7. Conduct kinematic and dynamic simulations
	to evaluate mechanical system movements,
	identifying and addressing potential issues
	such as collisions or interferences.
	1.8. Implement virtual prototyping techniques
	within CAD software to evaluate and refine
	designs, reducing the need for physical
	prototypes and enhancing design accuracy
	prototypes and enhancing design accuracy.
	prototypes and enhancing design accuracy. 1.9. Demonstrate expertise in generating high- quality renderings and visualizations to
	prototypes and enhancing design accuracy. 1.9. Demonstrate expertise in generating high- quality renderings and visualizations to effectively communicate complex design

2.	Develop detailed models and	prototypes	of	2.1. Utilize advanced CAD software to create
	engineering designs.			highly detailed 3D models that accurately
				represent engineering designs, considering all
				functional and aesthetic requirements.
				2.2. Apply engineering principles to design
				prototypes that meet performance
				specifications while ensuring
				manufacturability and cost-effectiveness.
				2.3. Integrate material properties, load conditions,
				and environmental factors into the modeling
				process to accurately simulate real-world
				benavior of components and systems.
				2.4. Develop Tunctional prototypes using Taplu
				CNC machining to validate design concents
				and test performance
				2.5. Perform iterative design revisions based on
				prototype testing and simulation results,
				refining models to enhance efficiency,
				reliability, and user experience.
				2.6. Use advanced simulation tools within CAD
				software to conduct structural, thermal, and
				fluid flow analysis, ensuring that prototypes
				meet the required performance criteria.
				2.7. Collaborate with cross-functional teams to
				incorporate feedback and optimize design
				details, ensuring prototypes align with overall
				project objectives.
				documenting performance outcomes and
				identifying areas for further ontimization or
				improvement.
				2.9. Ensure that prototypes adhere to industry
				standards, regulatory requirements, and
				quality control processes throughout the
				development phase.

Page | 61

ME0001 – 28. Finite Element Analysis (FEA) for Mechanical Engineers

The aim of this study unit is to provide learners with in-depth knowledge and practical skills in using Finite Element Analysis (FEA) techniques to analyze and optimize mechanical structures. Participants will develop the ability to solve complex engineering problems related to stress, strain, and deformation, ensuring enhanced structural performance and design efficiency in line with industry standards.

Learning Outcome:	Assessment Criteria:
1. Use FEA techniques to analyze and optimize mechanical structures.	1.1. Apply Finite Element Analysis (FEA) techniques to model and analyze mechanical
	structures, identifying stress, strain, and
	conditions.
	1.2. Develop accurate FEA models by discretizing
	complex structures into finite elements,
	ensuring appropriate boundary conditions,
	defined.
	1.3. Conduct structural analysis using FEA to
	evaluate factors such as safety, durability, and
	performance, ensuring designs meet required
	1.4. Perform optimization through FEA by
	modifying design parameters, material
	selections, or structural configurations to
	improve performance while minimizing
	1.5 Use advanced EFA tools to simulate real-
	world conditions, such as thermal effects,
	vibrations, and dynamic loads, assessing the
	system's response to various operational
	scenarios. 1.6. Validate EEA results through comparison with
	experimental data or real-world testing to
	ensure the accuracy and reliability of the
	simulations.
	1.7. Identify potential points of failure, stress
	structures, proposing design modifications to
	improve safety and efficiency.
	1.8. Interpret and communicate FEA findings
	clearly, providing detailed reports that
	nignlight key insights, recommended design changes and performance improvements
	1.9. Ensure compliance with relevant engineering

	standards, codes, and safety regulations throughout the FEA process to meet industry
	requirements and best practices.
2. Solve complex engineering problems involving stress, strain, and deformation.	2.1. Apply advanced principles of solid mechanics to analyze and solve complex engineering problems related to stress, strain, and deformation in mechanical structures.
	2.2. Utilize analytical methods and numerical techniques, such as Finite Element Analysis (FEA), to model and predict the behavior of materials under various loading conditions.
	2.3. Calculate stress distribution, strain responses, and deformation of structures, considering factors such as material properties, geometry, boundary conditions, and applied forces.
	2.4. Identify and evaluate critical stress points, strain concentrations, and potential failure modes within a structure to ensure its safety and reliability.
	2.5. Employ failure theories (e.g., von Mises, Tresca) to assess the risk of material failure and apply appropriate safety factors in design calculations.
	2.6. Solve for deformation in complex structures using appropriate assumptions, simplifying methods where applicable, and ensuring accuracy in results.
	2.7. Integrate experimental testing and real-world data to validate and refine theoretical models, ensuring solutions reflect practical performance.
	2.8. Propose and implement design modifications or material changes to mitigate undesirable stress and strain, improving structural integrity and performance.
	2.9. Communicate complex findings, including stress and strain analysis results, through clear technical reports and presentations for stakeholders.

ME0001 – 29. Advanced Manufacturing and Robotics

The aim of this study unit is to provide learners with a comprehensive understanding of advanced manufacturing processes and the integration of robotics within production systems. Participants will develop the skills to apply automation techniques to optimize manufacturing operations, enhancing efficiency, precision, and scalability in accordance with industry best practices.

Learning Outcome:	Assessment Criteria:
1. Learn advanced manufacturing processes and the integration of robotics in production	1.1. Study advanced manufacturing processes, including additive manufacturing, CNC
systems.	machining, injection molding, and advanced
	welding techniques, to understand their
	applications and advantages in modern
	production environments.
	1.2. Analyze the principles and technologies
	behind automation and robotics, focusing on
	their role in improving efficiency, precision,
	and scalability in manufacturing systems.
	1.3. Explore the integration of robotics into
	control systems and programming
	techniques for tasks such as assembly
	material handling, and quality inspection.
	1.4. Examine the benefits of Industry 4.0
	technologies, including IoT, AI, and machine
	learning, and their impact on enhancing
	manufacturing processes and enabling smart
	factories.
	1.5. Learn about the design, setup, and
	optimization of automated production
	systems, ensuring seamless interaction
	operators
	1.6 Gain knowledge of robotics sensors
	actuators, and vision systems, and their
	application in tasks like precision positioning,
	part identification, and real-time feedback.
	1.7. Study advanced manufacturing materials,
	including composites, smart materials, and
	nanomaterials, and understand how these
	can be processed using cutting-edge
	technologies.
	1.8. Investigate the use of simulation tools for
	testing and optimizing robotic systems and
	manutacturing processes, reducing errors and

	downtime before implementation.
	1.9. Understand safety protocols and industry
	standards for the integration of robotics in
	manufacturing environments ensuring
	compliance with regulations and promoting a
	safe working environment
	sale working environment.
2. Apply automation to optimize manufacturing	2.1. Evaluate manufacturing processes to identify
operations.	areas where automation can improve
	efficiency, reduce costs, and enhance quality
	control.
	2.2. Apply automation technologies such as
	programmable logic controllers (PLCs), robotic
	arms, and automated guided vehicles (AGVs)
	to streamline production workflows.
	2.3. Design and implement automated systems
	that integrate seamlessly with existing
	production lines, ensuring minimal disruption
	during deployment and operation.
	2.4. Utilize advanced control systems and sensors
	to monitor and adjust production parameters
	in real-time, optimizing for speed, precision,
	and resource utilization.
	2.5. Employ data analytics and machine learning
	algorithms to analyze production data,
	identify inefficiencies, and continuously
	optimize manufacturing processes.
	2.6. Implement predictive maintenance strategies
	through automation, using sensors and AI to
	detect potential equipment failures before
	they occur, reducing downtime and
	maintenance costs.
	2.7. Integrate automation with quality control
	systems, enabling automated inspection,
	defect detection, and sorting to maintain
	consistent product quality.
	2.8. Use simulation tools to model automated
	systems and test various configurations,
	ensuring the best possible performance
	before physical implementation.
	2.9. Continuously evaluate the performance of
	automated systems, making adjustments to
	optimize energy usage, throughput, and
	system reliability.
	. ,

ME0001 – 30. Mechatronics and Automation

The aim of this study unit is to provide learners with a deep understanding of the integration of mechanical systems, electronics, and control systems to create automated systems. Participants will develop the skills necessary to design and implement mechatronic systems for industrial applications, optimizing functionality and efficiency in line with contemporary engineering standards.

Learning Outcome:	Assessment Criteria:
1. Study the integration of mechanical systems,	1.1. Analyze the principles of mechatronics,
electronics, and control systems to create	focusing on the integration of mechanical
automated systems.	systems, electronics, and control systems to
	create efficient automated solutions.
	1.2. Study the design and functioning of
	mechanical components, including actuators,
	with electronic systems in automated
	applications.
	1.3. Explore the role of control systems in
	automated systems, including the use of
	programmable logic controllers (PLCs),
	microcontrollers, and embedded systems to
	manage mechanical and electronic
	operations.
	1.4. Understand the communication protocols
	(e.g., CAN, Modbus, Ethernet) used between
	control systems for data exchange and system
	synchronization
	1.5 Investigate feedback loops and control
	strategies, such as PID control, to maintain
	desired system performance and ensure
	stability in automated systems.
	1.6. Develop skills in system modeling and
	simulation to design and test integrated
	systems before physical implementation,
	optimizing for performance, efficiency, and
	cost.
	1.7. Study sensor technologies and their
	applications in automation, including
	proximity sensors, vision systems, and
	pressure sensors, for real-time monitoring
	and control.
	1.8. Design and implement automated systems
	that combine mechanical components,
	electronics, and control systems to achieve

					specific tasks, such as assembly, material
					handling, or process control.
2.	Design mechatronic applications.	systems	for	industrial	2.1. Apply mechatronic principles to design integrated systems combining mechanical, electrical, and control components for industrial automation and manufacturing
					processes.
					2.2. Develop system architectures that effectively integrate sensors, actuators, motors, and controllers to perform specific industrial tasks with high efficiency and reliability.
					2.3. Utilize advanced control algorithms, including PID and adaptive control, to optimize the performance of mechatronic systems in real- time, ensuring precision and responsiveness.
					2.4. Select appropriate materials, components, and technologies based on system requirements, considering factors such as cost, durability, and compatibility with industrial environments
					2.5. Design user-friendly interfaces for system operation, enabling operators to interact with and monitor mechatronic systems with ease and efficiency.
					2.6. Incorporate safety mechanisms and fault detection systems in the design, ensuring compliance with industry safety standards and reducing risk to both operators and equipment.
					2.7. Use simulation tools to model mechatronic systems, testing and refining designs before physical implementation to minimize errors and optimize system performance.
					2.8. Collaborate with cross-functional teams to integrate mechatronic systems with existing industrial infrastructure, ensuring seamless interaction with legacy systems and maximizing overall efficiency.
					2.9. Evaluate and optimize system performance in terms of speed, precision, energy efficiency, and cost-effectiveness, while ensuring scalability for future upgrades.

ME0001 – 31. Engineering Research Methodology

The aim of this study unit is to equip learners with essential research skills for investigating engineering problems and solutions. Participants will gain proficiency in conducting experiments, analyzing data, and presenting findings effectively, fostering a methodical approach to research that adheres to academic and professional standards in engineering.

Learning Outcome:	Assessment Criteria:
1. Develop research skills for investigating	1.1. Master advanced research methodologies,
engineering problems and solutions.	including literature reviews, experimental
	design, and data analysis techniques, to
	solutions
	1.2 Develop the ability to identify key research
	questions formulate hypotheses and define
	objectives to guide systematic investigations
	in engineering fields.
	1.3. Utilize various research tools and databases
	(e.g., IEEE Xplore, ScienceDirect, Google
	Scholar) to gather relevant academic and
	industry-related information on engineering
	topics.
	1.4. Apply statistical and analytical methods to
	interpret experimental and simulation data,
	drawing meaningful conclusions that
	contribute to the advancement of engineering
	knowledge.
	1.5. Develop proficiency in using engineering
	simulation software and modeling tools to
	celutions to complex engineering shallenges
	1.6 Collaborate with interdisciplinary teams to
	integrate different perspectives and expertise
	ensuring comprehensive research approaches
	and innovative solutions.
	1.7. Document research findings clearly and
	concisely, adhering to academic and
	professional standards, and presenting results
	through well-structured reports, papers, or
	presentations.
	1.8. Stay updated on current trends, emerging
	technologies, and best practices within the
	field of engineering by engaging in continuous
	learning and professional development.
	1.9. Engage in practical research activities, such as

	case studies, experiments, and fieldwork, to
	test theoretical concents and solutions in real-
	world engineering contexts
	wond engineering contexts.
2. Learn how to conduct experiments, analyze	2.1. Develop a solid understanding of
data, and present findings.	experimental design principles, including the
	selection of appropriate variables, control
	factors, and measurement techniques to
	ensure valid and reliable results.
	2.2. Learn how to use laboratory equipment and
	tools to accurately collect data, following
	standardized procedures and safety protocols
	to maintain consistency and reliability
	2.3 Apply statistical methods to analyze
	experimental data using techniques such as
	regression analysis hypothesis testing and
	variance analysis, hypothesis testing, and
	mooningful conclucions
	2.4 Use data visualization tools such as charts
	graphs and histograms to procent complex
	data in a clear and understandable manner
	for both technical and non-technical
	2.5 Learn how to assess experimental errors and
	2.3. Learn now to assess experimental errors and
	adjustments to improve the accuracy and
	adjustments to improve the accuracy and
	2.6 Develop skills in the interpretation of
	2.0. Develop skins in the interpretation of
	anomalies and correlations that inform
	problem-solving and decision-making in
	engineering projects
	2.7 Present research findings effectively through
	written reports and oral presentations
	adhering to academic or professional
	standards for clarity structure and content
	2.8 Learn how to create comprehensive reports
	that include methodologies data analysis
	conclusions and recommendations ensuring
	transparency and reproducibility of
	experiments
	2.9. Utilize software tools (e.g. MATLAR Excel R)
	for data analysis modeling and simulation to
	enhance the efficiency and accuracy of
	evnerimental processes
	experimental processes.

ME0001 – 32. Industrial Engineering and Process Optimization

The aim of this study unit is to provide learners with the knowledge and skills to apply industrial engineering principles for optimizing manufacturing processes. Participants will develop the ability to analyze workflows and systems to improve efficiency, minimize waste, and reduce costs, ensuring enhanced productivity and performance in line with industry best practices.

Learning Outcome:	Assessment Criteria:
1. Apply industrial engineering principles to	1.1. Apply industrial engineering principles to
optimize manufacturing processes.	analyze and improve manufacturing
	workflows, focusing on maximizing efficiency,
	minimizing waste, and optimizing resource
	utilization.
	1.2. Utilize time and motion study techniques to
	evaluate and streamline operations,
	identifying bottlenecks, inefficiencies, and
	areas for improvement in the production
	process.
	1.3. Implement Lean manufacturing principles,
	such as 5S, Kaizen, and value stream mapping,
	to eliminate waste and improve flow within
	manufacturing systems.
	1.4. Apply Six Sigma methodologies to reduce
	process variation, enhance quality control,
	and drive continuous improvement in
	manufacturing operations.
	1.5. Design and implement systems for inventory
	roducing inventory costs and improving
	material flow in production lines
	1.6 Use simulation and modeling tools to predict
	and ontimize the performance of
	manufacturing systems, analyzing factors such
	as throughput, cycle time, and resource
	allocation.
	1.7. Develop and implement strategies for
	capacity planning, ensuring that
	manufacturing resources are appropriately
	scaled to meet demand while minimizing idle
	time and inefficiencies.
	1.8. Incorporate ergonomics and safety
	considerations into process design, ensuring
	that work environments and processes
	enhance worker productivity and well-being.
	1.9. Evaluate the impact of automation and

www.ictqualab.co.uk

Page | 70

	robotics in manufacturing, designing systems that integrate advanced technologies to improve productivity and reduce human error.
2. Analyze workflows and processes to improve efficiency and reduce costs.	2.1. Conduct thorough analyses of existing workflows and processes, identifying inefficiencies, bottlenecks, and areas with high operational costs.
	2.2. Apply process mapping techniques, such as flowcharts and value stream mapping, to visualize and assess the sequence of tasks and their impact on overall efficiency.
	2.3. Use time and motion studies to evaluate task duration and worker movement, identifying opportunities to streamline operations and reduce wasted time and effort.
	2.4. Implement Lean principles, including eliminating non-value-added activities, standardizing work processes, and improving resource utilization to reduce operational waste and costs.
	2.5. Apply Six Sigma methodologies to analyze process variation, identifying root causes of inefficiencies and implementing corrective actions to enhance quality and reduce defects.
	2.6. Leverage automation and technology to optimize workflows, reducing manual intervention, increasing throughput, and improving overall productivity.
	2.7. Analyze resource allocation and utilization, ensuring that labor, equipment, and materials are used efficiently and cost-effectively across the production process.
	2.8. Conduct cost-benefit analyses of process improvements, evaluating potential investments in new technology, training, or equipment to ensure that they deliver a positive return on investment.
	2.9. Monitor key performance indicators (KPIs) such as cycle time, throughput, and cost per unit to track improvements and ensure continued process optimization.

ME0001 – 33. Design for Manufacturability

The aim of this study unit is to equip learners with the skills to design mechanical systems with manufacturability in mind. Participants will learn to optimize designs for ease of production, cost-effectiveness, and efficiency, ensuring that products can be manufactured at a high quality while minimizing production costs and time.

Learning Outcome:	Assessment Criteria:
1. Learn how to design mechanical systems with	1.1. Understand the principles of Design for
manufacturability in mind.	Manufacturability (DFM), focusing on simplifying
	designs to make them easier and more cost-
	1.2 Select appropriate materials manufacturing
	nrocesses and production methods based on
	system requirements and the ease of
	manufacturing, ensuring design compatibility with
	available technologies.
	1.3. Analyze and integrate tolerance and fit
	requirements into mechanical designs, optimizing
	for precision and minimizing production
	challenges related to part assembly and
	functionality.
	1.4. Othize design guidelines that minimize complex
	tolerances that may complicate manufacturing
	and increase production costs.
	1.5. Evaluate the impact of design choices on the
	overall production process, considering factors
	such as ease of machining, assembly time, and the
	ability to scale production efficiently.
	1.6. Leverage simulation and modeling tools to predict
	manufacturability issues early in the design
	making adjustments before physical prototypes
	are created.
	1.7. Incorporate modular design principles, enabling
	easy assembly and disassembly, reducing
	manufacturing complexity and improving product
	maintainability.
	1.8. Collaborate with cross-functional teams, including
	production engineers and manufacturers, to align
	the design process with practical manufacturing
	1.9 Ensure that the mechanical design incorporates
	ease of quality control, inspection, and testing
	reducing rework and defects during production.

ICTQual Level 6 Diploma in Mechanical Engineering 360 Credits – Three Years

2.	Optimize designs for ease o	f production a	and 2.1	. Apply Design for Cost (DFC) principles, focusing on
	cost-effectiveness.			reducing production costs by simplifying design
				features, minimizing material waste, and
				optimizing resource usage throughout the
				manufacturing process.
			2.2	. Evaluate and select cost-effective materials that
				meet performance and durability requirements
				while minimizing material costs and ensuring ease
				of processing in manufacturing.
			2.3	. Implement standardization in design by using
				common components and materials across
				multiple products to reduce part variety and
				simplify inventory management.
			2.4	. Design components with simple shapes and
				geometries that are easy to machine, mold, or
				labricate, reducing complexity and tooling costs
			25	utiling production.
			2.5	such as snan-fit joints and self-aligning
				components to minimize assembly time reduce
				labor costs, and improve production efficiency.
			2.6	. Optimize designs for automation, ensuring that
			_	parts are designed to be easily handled by
				automated equipment, reducing manual labor
				and increasing production speed.
			2.7	. Consider the entire product lifecycle, including
				maintenance, repair, and end-of-life recycling, to
				ensure that design decisions contribute to overall
				cost-effectiveness over time.
			2.8	. Conduct cost-benefit analysis during the design
				phase to evaluate different material, process, and
				design alternatives, selecting options that offer
				the best balance between performance and cost.
			2.9	. Utilize simulation and modeling software to
				assess the manufacturability of designs, testing
				different configurations and material choices for
				their impact on production efficiency and costs.

ME0001 – 34. Professional Practice in Mechanical Engineering

The aim of this study unit is to provide learners with a comprehensive understanding of the professional and ethical responsibilities of a mechanical engineer. Participants will gain knowledge of industry standards, regulations, and best practices, while developing the communication skills necessary to navigate the workplace and collaborate effectively in professional engineering environments.

Learning Outcome:	Assessment Criteria:
1. Understand the professional and ethical responsibilities of a mechanical engineer.	 1.1. Recognize the importance of adhering to engineering codes of conduct and professional standards, ensuring that all engineering practices meet legal, safety, and ethical requirements. 1.2. Understand the responsibility to prioritize public safety, health, and well-being in the design, development, and implementation of mechanical systems, ensuring that designs do not cause
	 1.3. Uphold honesty and integrity in all professional activities, including transparent communication, accurate reporting of results, and avoiding conflicts of interest.
	1.4. Recognize the duty to maintain confidentiality when dealing with proprietary or sensitive information, respecting intellectual property rights and safeguarding client and company interests.
	1.5. Understand the need for ongoing professional development, committing to continuous learning, staying current with advancements in technology, and engaging in activities that enhance technical expertise and ethical awareness.
	1.6. Commit to environmental sustainability by considering the environmental impact of engineering decisions, promoting the use of sustainable materials and practices, and designing systems with minimal ecological footprint.
	 Ensure that engineering solutions are inclusive and equitable, considering diverse user needs and promoting accessibility and fairness in design.
	 1.8. Foster a collaborative and respectful work environment, valuing teamwork, diversity, and communication among colleagues, clients, and

					stakeholders.
2.	Learn how	to na	vigate industry	standards,	2.1.Familiarize yourself with relevant industry
	regulations,	and	communication	in the	standards, regulations, and codes of practice,
	workplace.				ensuring that all engineering designs, processes,
	-				and products comply with legal and safety
					requirements.
					2.2.Understand the key regulatory bodies, such as ISO,
					ANSI, and OSHA, and stay updated on their latest
					standards and guidelines to ensure compliance in
					various mechanical engineering projects.
					2.3.Develop the ability to interpret and apply
					regulatory requirements to real-world engineering
					scenarios, ensuring that designs meet safety,
					environmental, and quality standards.
					2.4. Learn how to integrate industry standards into the
					design and development process, from initial
					concepts through production and testing, ensuring
					products meet required certifications and
					approvals.
					communication with stakeholders including
					clients suppliers regulatory agencies and team
					members to ensure successful project outcomes.
					2.6 Learn how to prepare and present technical
					documentation, reports, and presentations in a
					clear, concise, and professional manner, ensuring
					that information is accessible to both technical and
					non-technical audiences.
					2.7. Develop strong written and verbal communication
					skills to facilitate collaboration across departments
					and disciplines, ensuring smooth workflows and
					effective problem-solving in the workplace.
					2.8.Familiarize yourself with the ethical guidelines for
					communication, ensuring that all interactions are
					transparent, honest, and respect confidentiality
					agreements and intellectual property protections.
					2.9.Cultivate the ability to navigate cross-functional
					and cross-cultural communication challenges,
					tostering an inclusive environment and
					collaborating effectively with diverse teams in the
					workplace.

www.ictqualab.co.uk

Page | 75

ME0001 – 35. Engineering Innovation and Entrepreneurship

The aim of this study unit is to inspire learners to explore opportunities for innovation and entrepreneurship within the engineering sector. Participants will develop the skills needed to create, evaluate, and bring new engineering solutions and products to market, fostering creativity, business acumen, and an entrepreneurial mindset in alignment with industry needs and trends.

Learning Outcome:	Assessment Criteria:
1. Explore opportunities for innovation and entrepreneurship within the engineering sector.	 1.1. Analyze emerging trends and technologies in the engineering sector, identifying opportunities for innovation that align with market demands, technological advancements, and sustainability goals. 1.2 Devalues on extreme powering mindeet by evaluation
	new business models, products, and services that address existing gaps in the market or improve upon existing solutions.
	1.3. Investigate the potential for integrating interdisciplinary knowledge, such as mechanical engineering combined with fields like robotics, artificial intelligence, or renewable energy, to create innovative solutions with broad applications.
	1.4. Understand the process of transforming innovative ideas into viable products, including market research, prototype development, intellectual property protection, and commercialization strategies.
	1.5. Explore avenues for collaboration with startups, established companies, and research institutions to bring new technologies to market, leveraging resources and expertise to accelerate innovation.
	1.6. Learn the fundamentals of securing funding for engineering innovations, including venture capital, government grants, and crowdfunding, and develop business plans that highlight the value proposition and return on invostment
	 1.7. Investigate opportunities for creating sustainable engineering solutions that address societal challenges, such as environmental impact reduction, energy efficiency, and waste minimization
	 1.8. Foster creativity and problem-solving skills to generate new ideas, prototypes, or products that challenge traditional engineering practices and

		r	meet evolving market needs.
2.	Develop skills to bring new engineering solutions and products to market.	2.1. (c r 2.2. [a r	Gain a deep understanding of the product development lifecycle, from idea generation and concept design to prototyping, testing, and final product launch, ensuring all phases align with market needs and technical feasibility. Develop the ability to conduct market research and customer needs analysis, identifying target markets, user pain points, and competitive andscapes to create products with high commercial potential.
		2.3. L e a a	Learn how to design and iterate prototypes efficiently, using rapid prototyping techniques and advanced CAD software, to validate concepts and assess technical performance before full-scale production.
		2.4. M s k	Master the principles of product testing and quality assurance, ensuring that engineering solutions meet safety, regulatory, and performance standards while minimizing risk during production and post-launch phases.
		2.5. (F a e	Cultivate skills in project management to oversee product development timelines, resource allocation, and budget control, ensuring that engineering projects are completed on time and within budget.
		2.6. l F t i	Understand the importance of intellectual property protection, including patents, trademarks, and copyrights, to safeguard nnovative engineering solutions and ensure competitive advantage in the marketplace.
		2.7. L F r t	Learn the fundamentals of commercializing new products, including pricing strategies, go-to- market plans, sales channels, and marketing tactics, to maximize the product's reach and profitability.
		2.8. [f a c t	Develop proficiency in collaboration with cross- functional teams, including marketing, sales, legal, and production, to ensure the smooth transition of new engineering solutions from development to market introduction.

ME0001 – 36. Capstone Project/Thesis

The aim of this study unit is to provide learners with the opportunity to apply the knowledge and skills acquired throughout the program in the completion of a comprehensive engineering project or research thesis. Participants will demonstrate their ability to tackle real-world engineering problems, employ critical thinking and technical expertise, and present their findings in a professional manner, meeting industry standards and academic expectations.

Lea	arning Outcome:	Asse	essment Criteria:
1.	Apply knowledge from the entire program to	1.1.	Synthesize knowledge and skills acquired
	complete a comprehensive engineering project		throughout the program, integrating concepts
	or research thesis.		from various engineering disciplines to develop a
			comprehensive solution for a real-world
			engineering problem or research topic.
		1.2.	Conduct thorough research to gather relevant
			data, review existing literature, and assess current
			industry trends, ensuring that the project or thesis
			is grounded in the latest technological
			advancements and best practices.
		1.3.	Apply advanced problem-solving techniques,
			utilizing engineering principles, methodologies,
			and tools learned during the program, to develop
		1 /	Innovative and practical solutions.
		1.4.	to tost hypotheses, analyze system performance
			and evaluate the effectiveness of proposed
			solutions ensuring rigorous and accurate data
			collection and analysis
		1.5.	Demonstrate the ability to manage the project's
			scope, timeline, and resources effectively,
			ensuring that milestones are met and the project
			is completed within the given constraints.
		1.6.	Ensure that the engineering project or research
			thesis adheres to ethical standards, including
			considerations of safety, environmental impact,
			and social responsibility, while meeting regulatory
			requirements.
		1.7.	Communicate findings and solutions clearly
			through well-structured technical reports,
			presentations, and discussions, tailored to both
			technical and non-technical audiences,
		1 0	demonstrating effective communication skills.
		1.8.	professionals for foodback and refinament
		1.8.	Collaborate with mentors, peers, and industry professionals for feedback and refinement,

			incorporating constructive criticism to improve
			the quality and impact of the project or research.
2.	Demonstrate the ability to solve real-world	2.1.	Apply engineering principles, methodologies, and
	engineering problems and present findings		analytical techniques to identify, define, and solve
	professionally.		real-world engineering challenges, ensuring
			solutions are both technically sound and practical.
		2.2.	Conduct comprehensive problem analysis,
			breaking down complex engineering issues into
			manageable components and identifying key
			factors influencing system performance or project
			success.
		2.3.	Use appropriate tools and software to model,
			simulate, and optimize engineering solutions,
			ensuring that the proposed solutions meet
			performance, safety, and regulatory
			requirements.
		2.4.	Evaluate multiple potential solutions, considering
			trade-offs between cost, efficiency, feasibility, and
			sustainability, and select the most effective
			approach based on defined project criteria.
		2.5.	Demonstrate effective teamwork and
			collaboration, engaging with multidisciplinary
			teams to draw upon diverse expertise and
		20	ennance problem-solving capabilities.
		2.6.	present engineering solutions clearly and
			and written reports that articulate technical
			concents analysis methods and final outcomes to
			hoth technical and non-technical audiences
		27	Communicate the benefits and limitations of the
		2.7.	proposed solutions, providing clear justifications
			for design choices and alternative approaches
			when appropriate.
		2.8.	Ensure all findings and recommendations are
			grounded in data, using charts, graphs, and other
			visual aids to support key arguments and make
			complex information more accessible.

ICTQual AB

Yew Tree Avenue, Dagenham,

London East, United Kingdom RM10 7FN

+44 744 139 8083

Support@ictqualab.co.uk | www.ictqualab.co.uk

Visit Official Web page

Page | 80