

Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

Website www.ictqualab.co.uk

Email: Support@ictqualab.co.uk

ICTQual AB

Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

Contents

About ICTQual AB	2
Course Overview	2
Certification Framework	3
Entry Requirements	3
Qualification Structure	3
Centre Requirements	5
Support for Candidates	6
Assessment	6
Unit Descriptors	8

Qualification Specifications about

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

About ICTQual AB

ICTQual AB UK Ltd. is a distinguished awarding body based in the United Kingdom, dedicated to fostering excellence in education, training, and skills development. Committed to global standards, ICTQual AB provides internationally recognized qualifications that empower individuals and organizations to thrive in an increasingly competitive world. Their offerings span diverse industries, including technical fields, health and safety, management, and more, ensuring relevance and adaptability to modern workforce needs.

The organization prides itself on delivering high-quality educational solutions through a network of Approved Training Centres worldwide. Their robust curriculum and innovative teaching methodologies are designed to equip learners with practical knowledge and skills for personal and professional growth. With a mission to inspire lifelong learning and drive positive change, ICTQual AB continuously evolves its programs to stay ahead of industry trends and technological advancements.

ICTQual AB's vision is to set benchmarks for educational excellence while promoting inclusivity and integrity. Their unwavering focus on quality and accessibility makes them a trusted partner in shaping future-ready professionals and advancing societal progress globally.

Course Overview

The ICTQual Level 6 Diploma in Agriculture Engineering is a comprehensive three-year program designed to equip learners with advanced knowledge and skills to address modern challenges in agriculture through engineering innovation. Spanning 360 credits, this qualification integrates core principles of mechanical, civil, electrical, and biological engineering, tailored specifically to the agriculture sector.

The program emphasizes the development of innovative solutions for sustainable food production, resource management, and farm operations. It is ideal for individuals who aspire to revolutionize agricultural practices, enhance efficiency, and contribute to global food security.

Learners will gain expertise in areas such as precision agriculture technologies, renewable energy applications, advanced irrigation systems, and sustainable farm design. The qualification also fosters skills in project management and entrepreneurship, preparing graduates to lead in the evolving agricultural landscape.

This diploma serves as a pathway to career opportunities in agricultural engineering, consultancy, research, and sustainable farming practices, offering a balance of theoretical knowledge and practical application. Graduates will emerge as pioneers ready to drive advancements in the agriculture and engineering sectors.

Certification Framework

Qualification title	ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years	
Course ID	AGE0001	
Qualification Credits	360 Credits	
Course Duration	36 Months	
Grading Type	Pass / Fail	
Competency Evaluation	Coursework / Assignments / Verifiable Experience	
Assessment	The assessment and verification process for ICTQual qualifications involves two key stages:	
	Internal Assessment and Verification:	
	 ✓ Conducted by the staff at the Approved Training Centre (ATC). Ensures learners meet the required standards through continuous assessments. ✓ Internal quality assurance (IQA) is carried out by the centre's IQA staff to validate the assessment processes. 	
	External Quality Assurance:	
	✓ Managed by ICTQual AB verifiers, who periodically review the centre's assessment and IQA processes.	
	 Verifies that assessments are conducted to the required standards and ensures consistency across centres 	

Entry Requirements

To enroll in the ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years, candidates must meet the following entry requirements:

- ✓ Applicants must be at least 16 years old.
- A minimum of a Level 5 qualification (or equivalent) in a related field such as engineering, technology, or a technical discipline. Alternatively, applicants should have A-levels or equivalent qualifications, including Mathematics and English.
- ✓ Applicants should demonstrate a strong interest in both agriculture and engineering, and may be required to submit a personal statement or attend an interview to assess their motivation and suitability for the course.
- ✓ While prior experience in agricultural engineering is not mandatory, applicants with a background in mechanics, engineering, or agriculture will be considered favorably.
- ✓ For non-native English speakers, proof of English language proficiency is required to ensure that applicants can fully engage with the course material.

Qualification Structure

This qualification comprises 36 mandatory units, totaling 360 credits. Candidates must successfully complete all mandatory units to achieve the qualification.

www.ictqualab.co.uk Support@ictqualab.co.uk

Mandatory Units		
Unit Ref#	Unit Title	Credits
	Year 1: Foundational Knowledge	
AGE0001-1	Introduction to Agricultural Engineering	10
AGE0001-2	Basics of Soil Science	10
AGE0001-3	Plant Science and Crop Physiology	10
AGE0001-4	Introduction to Farm Machinery	10
AGE0001-5	Principles of Irrigation and Drainage	10
AGE0001-6	Environmental Science in Agriculture	10
AGE0001-7	Mathematics for Engineers	10
AGE0001-8	Fundamentals of Agricultural Economics	10
AGE0001-9	Introduction to Renewable Energy in Agriculture	10
AGE0001-10	Agricultural Chemistry	10
AGE0001-11	Engineering Drawing and CAD	10
AGE0001-12	Workshop Practices in Agricultural Engineering	10
	Year 2: Intermediate Concepts and Applications	
AGE0001-13	Advanced Soil and Water Management	10
AGE0001-14	Farm Power and Mechanization	10
AGE0001-15	Agricultural Structures and Materials	10
AGE0001-16	Irrigation Systems Design	10
AGE0001-17	Introduction to Precision Agriculture	10
AGE0001-18	Agricultural Waste Management	10
AGE0001-19	Crop Protection Technologies	10
AGE0001-20	Advanced Farm Machinery Operations	10
AGE0001-21	Principles of Agro-Processing	10
AGE0001-22	Renewable Energy Technologies in Agriculture	10
AGE0001-23	Land Surveying and Mapping	10
AGE0001-24	Practical Training in Agricultural Engineering	10
	Year 3: Advanced Studies and Specialization	
AGE0001-25	Sustainable Agriculture Practices	10
AGE0001-26	Advanced Irrigation and Drainage Engineering	10
AGE0001-27	Farm Business Management	10
AGE0001-28	Design of Agricultural Machinery	10
AGE0001-29	Precision Farming Systems	10
AGE0001-30	Advanced Soil Mechanics	10
AGE0001-31	Climate-Smart Agriculture	10
AGE0001-32	Renewable Energy Systems for Farms	10
AGE0001-33	Post-Harvest Technology	10
AGE0001-34	Automation in Agriculture	10
AGE0001-35	Research Methods in Agriculture Engineering	10
AGE0001-36	Final Project in Agricultural Engineering	10

Centre Requirements

Even if a centre is already registered with ICTQual AB, it must meet specific requirements to deliver the ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years. These standards ensure the quality and consistency of training, assessment, and learner support.

1. Approval to Deliver the Qualification

- ✓ Centres must obtain formal approval from ICTQual AB to deliver this specific qualification, even if they are already registered.
- ✓ The approval process includes a review of resources, staff qualifications, and policies relevant to the program.

2. Qualified Staff

- ✓ Tutors: Must have relevant qualifications in Agriculture Engineering at Level 7 or higher, alongside teaching/training experience.
- ✓ Assessors: Must hold a recognized assessor qualification and demonstrate expertise in Agriculture Engineering.
- ✓ Internal Quality Assurers (IQAs): Must be appropriately qualified and experienced to monitor the quality of assessments.

3. Learning Facilities

Centres must have access to appropriate learning facilities, which include:

- Classrooms: Modern classrooms equipped with multimedia tools to deliver comprehensive theoretical instruction on agricultural systems, sustainable practices, and modern farming technologies.
- ✓ Practical Areas: Hands-on training areas featuring advanced agricultural machinery, irrigation systems, soil testing kits, and greenhouse facilities to provide practical experience in real-world farming and engineering techniques.
- ✓ Technology Access: High-performance computers with industry-standard software (e.g., GIS for land management, precision farming tools, and crop modeling software) and internet connectivity for research, simulations, and project development.

4. Health and Safety Compliance

- ✓ Centres must ensure that practical training environments comply with relevant health and safety regulations.
- ✓ Risk assessments must be conducted regularly to maintain a safe learning environment.

5. Resource Requirements

- ✓ Learning Materials: Approved course manuals, textbooks, and study guides aligned with the curriculum.
- ✓ Assessment Tools: Templates, guidelines, and resources for conducting and recording assessments.
- ✓ E-Learning Systems: If offering online or hybrid learning, centres must provide a robust Learning Management System (LMS) to facilitate remote delivery.

6. Assessment and Quality Assurance

- ✓ Centres must adhere to ICTQual's assessment standards, ensuring that all assessments are fair, valid, and reliable.
- ✓ Internal quality assurance (IQA) processes must be in place to monitor assessments and provide feedback to assessors.
- ✓ External verification visits from ICTQual will ensure compliance with awarding body standards.

7. Learner Support

✓ Centres must provide learners with access to guidance and support throughout the program, including:

- ✓ Academic support for coursework.
- ✓ Career guidance for future progression.
- ✓ Additional support for learners with specific needs (e.g., disabilities or language barriers).

8. Policies and Procedures

Centres must maintain and implement the following policies, as required by ICTQual:

- ✓ Equal Opportunities Policy.
- ✓ Health and Safety Policy.
- ✓ Safeguarding Policies and Procedures.
- ✓ Complaints and Appeals Procedure.
- ✓ Data Protection and Confidentiality Policy.

9. Regular Reporting to ICTQual

- ✓ Centres must provide regular updates to ICTQual AB on learner enrollment, progress, and completion rates.
- ✓ Centres are required to maintain records of assessments and learner achievements for external auditing purposes.

Support for Candidates

Centres should ensure that materials developed to support candidates:

- ✓ Facilitate tracking of achievements as candidates progress through the learning outcomes and assessment criteria.
- ✓ Include information on how and where ICTQual's policies and procedures can be accessed.
- ✓ Provide mechanisms for Internal and External Quality Assurance staff to verify and authenticate evidence effectively.

This approach ensures transparency, supports candidates' learning journeys, and upholds quality assurance standards.

Assessment

This qualification is competence-based, requiring candidates to demonstrate proficiency as defined in the qualification units. The assessment evaluates the candidate's skills, knowledge, and understanding against the set standards. Key details include:

1. Assessment Process:

- ✓ Must be conducted by an experienced and qualified assessor.
- ✓ Candidates compile a portfolio of evidence that satisfies all learning outcomes and assessment criteria for each unit.

2. Types of Evidence:

- ✓ Observation reports by the assessor.
- ✓ Assignments, projects, or reports.
- ✓ Professional discussions.
- ✓ Witness testimonies.
- ✓ Candidate-produced work.

- ✓ Worksheets.
- ✓ Records of oral and written questioning.
- ✓ Recognition of Prior Learning (RPL).

3. Learning Outcomes and Assessment Criteria:

- ✓ Learning Outcomes: Define what candidates should know, understand, or accomplish upon completing the unit.
- Assessment Criteria: Detail the standards candidates must meet to demonstrate that the learning outcomes have been achieved.

This framework ensures rigorous and consistent evaluation of candidates' competence in line with the qualification's objectives.

Unit Descriptors

AGE0001-1 : Introduction to Agricultural Engineering

This unit aims to introduce learners to the fundamental principles of agricultural engineering and its essential role in modern agriculture. Students will explore the various engineering techniques and technologies that enhance agricultural practices, improving productivity, sustainability, and efficiency. The unit provides a foundational understanding of how agricultural engineering integrates with farming systems to address the challenges of modern agriculture.

Learning Outcome:	Assessment Criteria:
1. Understand the role of agricultural engineering in	1.1. Demonstrates a comprehensive
modern farming.	understanding of the key concepts in
	agricultural engineering and its application in
	modern farming systems.
	1.2. Analyzes the integration of engineering
	principles in optimizing agricultural
	productivity and sustainability.
	1.3. Evaluates the impact of technological
	advancements in agricultural engineering,
	such as automation, precision farming, and
	1.4 Assesses the role of agricultural engineering in
	enhancing resource management including
	water, soil, and energy conservation.
	1.5. Explores the contributions of agricultural
	engineering to reducing environmental impact
	through sustainable farming practices and
	eco-friendly technologies.
	1.6. Investigates the development and application
	of modern farming equipment, machinery,
	and infrastructure to improve efficiency and
	crop yield.
	1.7. Critically evaluates the challenges and
	opportunities for agricultural engineers in
	addressing global lood security and climate
	1.8 Demonstrates an understanding of the
	interdisciplinary nature of agricultural
	engineering collaborating with other fields
	such as biology, environmental science, and
	economics.
	1.9. Communicates the role of agricultural
	engineering in advancing rural development
	and improving the livelihoods of farmers
	worldwide.

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

2. Learn the basic principles and applications of	2.1. Understands the fundamental principles of
agricultural engineering in crop and livestock	agricultural engineering, including mechanics,
production.	thermodynamics, and fluid dynamics, and
	how they apply to farming systems.
	2.2. Demonstrates knowledge of the design,
	operation, and maintenance of machinery and
	equipment used in crop production, such as
	tractors, planters, and harvesters.
	2.3. Analyzes the role of agricultural engineering in
	improving crop production through
	technologies like irrigation systems, soil
	management, and crop protection techniques.
	2.4. Evaluates the use of automation and precision
	farming technologies in optimizing crop yield,
	minimizing resource usage, and enhancing
	sustainability.
	2.5. Understands the principles of livestock
	production engineering, including the design
	and management of housing, feeding systems,
	and waste management for livestock.
	2.6. Explores the application of engineering
	technologies in improving animal health,
	welfare, and productivity through innovations
	in nutrition, genetics, and veterinary care.
	2.7. Investigates the role of agricultural
	engineering in ensuring the efficient use of
	resources, including water, energy, and feed,
	In both crop and livestock production.
	2.8. Applies knowledge of engineering solutions to
	address environmental challenges, such as
	waste disposal, pollution control, and
	Sustainable farming practices.
	2.5. Demonstrates the ability to assess and
	technologies for improving the efficiency
	sustainability and profitability of crop and
	livestock farming systems
	investock farming systems.

AGE0001-2 Basics of Soil Science

The aim of this study unit is to provide students with a fundamental understanding of soil science, focusing on the identification of different soil types and their properties. It emphasizes the importance of soil fertility and the techniques used to manage soil health in agricultural systems. Students will learn how to assess soil conditions and apply appropriate practices to enhance soil productivity and sustainability in farming.

Learning Outcome:	Assessment Criteria:
1. Identify different soil types and their properties.	 Demonstrates knowledge of the classification of soil types based on texture, structure, and composition, including sand, silt, clay, and loam.
	1.2. Identifies key properties of different soil types,
	such as soil texture, moisture retention,
	1.3. Understands the impact of soil pH, salinity, and organic matter content on plant growth and crop production.
	1.4. Recognizes the importance of soil permeability and infiltration rates in relation to water movement and irrigation management.
	1.5. Evaluates the role of soil fertility and nutrient content, including macro and micronutrients, in supporting healthy plant growth.
	 1.6. Assesses the effect of soil compaction, erosion, and degradation on agricultural productivity and land management.
	 1.7. Investigates the influence of soil structure on root development, aeration, and overall soil health.
	 Analyzes the relationship between soil type and suitability for different crops or livestock farming practices.
	1.9. Applies knowledge of soil properties to recommend soil management practices that improve soil health, productivity, and sustainability.
2. Understand soil fertility and its management in	2.1. Demonstrates a comprehensive understanding
agricultural systems.	of soil fertility, including the role of essential nutrients (nitrogen, phosphorus, potassium, and micronutrients) in plant growth and development.
	 Identifies factors affecting soil fertility, such as soil texture, organic matter content, pH, and microbial activity.
	2.3. Evaluates the impact of soil nutrient

deficiencies and imbalances on crop yields and soil health.
2.4. Understands the principles of soil nutrient cycles, including nitrogen fixation, mineralization, and nutrient uptake by plants.
2.5. Analyzes different soil fertility management practices, such as crop rotation, cover cropping, organic amendments, and the use of synthetic fertilizers.
2.6. Assesses the environmental implications of fertilizer use, including nutrient leaching, runoff, and the potential for water and soil pollution.
2.7. Explores the role of soil testing and monitoring in evaluating soil nutrient status and guiding fertilizer application strategies.
2.8. Investigates sustainable soil fertility management techniques, such as integrated nutrient management (INM) and precision farming, to optimize nutrient use efficiency.
2.9. Demonstrates the ability to recommend appropriate soil fertility management practices based on specific crop needs, soil types, and environmental conditions.

AGE0001-3 Plant Science and Crop Physiology

The aim of this study unit is to provide students with a foundational understanding of plant physiology and the key processes that influence plant growth and development. It focuses on the relationship between environmental factors, such as light, temperature, and soil conditions, and their impact on plant health and productivity. Students will gain insights into how these physiological processes can be managed to optimize crop production and ensure sustainable agricultural practices.

Learning Outcome:	Assessment Criteria:
1. Grasp the basic physiological processes in plants.	1.1. Demonstrates a comprehensive understanding of plant physiological processes, including photosynthesis respiration and transpiration.
	1.2. Accurately explains the role of plant cells and
	tissues in physiological functions, highlighting
	key structures such as chloroplasts, stomata, and xylem.
	1.3. Identifies and describes the processes involved
	in water and nutrient uptake in plants.
	1.4. Demonstrates knowledge of the factors
	affecting plant growth and development, such
	1.5. Applies the principles of plant physiology to
	real-world scenarios, including agriculture,
	horticulture, and environmental sustainability.
	1.6. Demonstrates proficiency in interpreting
	experimental data related to plant physiology.
	1.7. Critically evaluates the impact of
	salinity and pollutants on plant physiological
	processes.
	1.8. Demonstrates the ability to integrate
	theoretical knowledge with practical
	applications in plant science.
	1.9. Effectively communicates plant physiological
	concepts through written and oral formats,
2. Understand the relationship between plant	2.1. Demonstrates a thorough understanding of
growth and environmental factors.	how environmental factors, such as light,
	temperature, numidity, and soil composition,
	2.2. Identifies the key environmental variables that
	affect plant physiological processes, including
	photosynthesis, respiration, and transpiration.
	2.3. Describes the mechanisms through which
	plants sense and respond to changes in their
	environment, such as photoreceptors and

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

temperature sensors.
2.4. Explains the role of abiotic factors like water
availability, soil pH, and nutrient levels in
regulating plant growth and development.
2.5. Analyzes the impact of both natural and
human-induced environmental changes (e.g.,
climate change, pollution) on plant growth.
2.6. Demonstrates knowledge of how plants adapt
to environmental stressors, including drought,
extreme temperatures, and high salinity.
2.7. Applies knowledge of environmental factors to
optimize plant growth in agricultural and
horticultural settings.
2.8. Evaluates the effects of different
environmental conditions on plant
productivity and crop yield.
2.9. Effectively communicates the complex
relationship between plant growth and
environmental factors using appropriate
scientific terminology.

AGE0001-4 Introduction to Farm Machinery

The aim of this study unit is to introduce students to the operation, selection, and maintenance of farm machinery. It focuses on understanding the different types of farm equipment, their functions, and how to select the appropriate machinery for specific agricultural tasks. Students will also learn essential maintenance and safety practices to ensure the efficient and safe operation of farm machinery, contributing to improved productivity and longevity of equipment.

Learning Outcome:	Assessment Criteria:
1. Understand the operation and selection of farm machinery.	 1.1. Demonstrates a thorough understanding of the different types of farm machinery used in agricultural practices, including tractors, harvesters, plows, and irrigation systems. 1.2. Accurately, explains the basic operating
	principles and functions of various farm machines, including power sources, mechanical systems, and control mechanisms.
	1.3. Identifies the key factors influencing the selection of farm machinery, such as soil type, crop type, field size, and terrain.
	1.4. Demonstrates knowledge of the maintenance and servicing requirements of farm machinery to ensure optimal performance and longevity.
	1.5. Evaluates the economic and environmental considerations involved in selecting and operating farm machinery, including fuel efficiency and emissions.
	1.6. Applies principles of farm machinery operation to improve efficiency and productivity in agricultural practices.
	1.7. Demonstrates the ability to troubleshoot common mechanical issues and perform basic repairs on farm machinery.
	1.8. Assesses the safety protocols and risk management strategies associated with the operation of farm machinery.
	1.9. Effectively communicates technical aspects of farm machinery operation and selection, using appropriate terminology and clear instructions.
2. Learn the basic maintenance and safety practices	2.1. Demonstrates a comprehensive understanding
for farm equipment.	of basic maintenance practices for farm
	equipment, including regular inspections,
	cleaning, lubrication, and adjustments.
	2.2. Identifies key components of farm equipment that require routine maintenance, such as
	· · ·

engines, hydraulic systems, belts, and tires.
2.3. Explains the importance of preventive
maintenance in extending the lifespan and
ensuring the reliability of farm machinery.
2.4. Applies knowledge of manufacturer guidelines
and service manuals to maintain farm
equipment according to recommended schedules.
2.5. Demonstrates proficiency in identifying and
addressing common mechanical issues,
including troubleshooting and basic repairs.
2.6. Understands and implements safety practices
for operating and maintaining farm
equipment, including proper handling, storage,
and use of machinery.
2.7. Adheres to personal protective equipment
(PPE) requirements and safety standards to
operation and maintenance.
2.8. Evaluates and applies safety protocols for
handling hazardous materials, such as fuels,
lubricants, and chemicals used in equipment
maintenance.
2.9. Effectively communicates maintenance
schedules, safety procedures, and
troubleshooting techniques to team members
or operators.

AGE0001-5 Principles of Irrigation and Drainage

The aim of this study unit is to provide students with a solid understanding of the principles and methods of irrigation and drainage in agricultural systems. It focuses on water management techniques that optimize water use, improve crop production, and promote sustainability. Students will learn how to design and implement effective irrigation and drainage systems, ensuring efficient water use and supporting the long-term health and productivity of agricultural land.

Learning Outcome:	Assessment Criteria:
1. Learn the principles and methods of irrigation and	1.1. Demonstrates a thorough understanding of
drainage.	the basic principles of irrigation, including the
	importance of water management for crop
	growth and soil health.
	1.2. Explains the different types of irrigation
	systems, such as drip, sprinkler, and surface
	irrigation, and their suitability for various crop
	types and environmental conditions.
	1.3. Identifies key factors influencing irrigation
	efficiency, including water availability, soil
	properties, and climate conditions.
	1.4. Understands the principles of drainage
	systems, including the prevention of
	waterlogging and the promotion of optimal
	1.5 Describes the methods used for designing and
	implementing effective irrigation and draipage
	systems considering factors such as field
	lavout, slope, and water flow.
	1.6. Applies knowledge of water conservation
	techniques and efficient irrigation methods to
	reduce water wastage and improve
	sustainability.
	1.7. Evaluates the environmental impact of
	irrigation practices, including water use
	efficiency and potential effects on local
	ecosystems.
	1.8. Demonstrates the ability to assess soil
	moisture levels and adjust irrigation practices
	accordingly to meet crop water requirements.
	1.9. Effectively communicates irrigation and
	aramage principles, methods, and their
	practical applications to stakenoliters of team
	members.
2. Understand water management in agricultural	2.1. Demonstrates a comprehensive understanding
systems for sustainable crop production.	of the principles of water management in
	agricultural systems, including water cycles,

irrigation techniques, and water conservation
 Evaluates the impact of water management on crop yield, soil health, and overall agricultural sustainability.
2.3. Analyzes different water sources (rainwater, groundwater, surface water) and their suitability for various agricultural practices.
2.4. Assesses the role of climate variability and weather patterns in water management strategies for sustainable crop production.
2.5. Applies knowledge of efficient irrigation systems (e.g., drip, sprinkler, and furrow) to optimize water use in different crop production environments.
2.6. Identifies best practices for managing water use efficiency in both rain-fed and irrigated farming systems.
2.7. Integrates knowledge of soil-water relationships and their influence on crop growth and productivity.
2.8. Evaluates the socio-economic and environmental implications of water management practices in agriculture, considering local, regional, and global perspectives
2.9. Proposes innovative and adaptive strategies for improving water management in response to emerging challenges such as climate change and water scarcity.

AGE0001-6 Environmental Science in Agriculture

The aim of this study unit is to provide students with a comprehensive understanding of the environmental impacts of agricultural practices. It focuses on the role of agriculture in environmental degradation and the importance of adopting sustainable practices to mitigate these effects. Students will learn about the principles of environmental protection, conservation, and how to integrate sustainable solutions into agricultural systems to promote ecological balance and long-term agricultural productivity.

Learning Outcome:	Assessment Criteria:
1 Understand the impact of agriculture on the	1.1. Demonstrates a comprehensive understanding
anvironment	of the direct and indirect environmental
environment.	or the unect and multect environmental
	impacts of agricultural practices, including soli
	degradation, water pollution, and biodiversity
	loss.
	1.2. Analyzes the effects of agricultural land use
	changes, such as deforestation and
	urbanization, on ecosystems and carbon
	emissions.
	1.3. Assesses the role of agricultural inputs, such as
	fertilizers, pesticides, and herbicides, on soil
	health, water quality, and surrounding
	ecosystems.
	1.4. Evaluates the environmental consequences of
	different farming practices (e.g., monoculture,
	intensive farming, and organic farming) on
	long-term sustainability.
	1.5. Identifies the contribution of agriculture to
	greenhouse gas emissions and the role of
	sustainable practices in mitigating climate
	change.
	1.6. Examines the impact of agricultural waste.
	including crop residues and livestock by-
	products on the environment and potential
	solutions for waste management
	1.7 Investigates the relationship between
	agricultural water usage and its effects on local
	and global water resources
	1.8. Considers the influence of agricultural
	nractices on wildlife habitats including both
	nositive (e.g. agroforectry) and negative (e.g.
	habitat destruction) impacts
	1.9 Proposes strategies to reduce the
	environmental footprint of agriculturo
	amphasizing concontation practices
	emphasizing conservation practices,
	sustainable land management, and the
	adoption of eco-friendly technologies.

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

2. Learn about sustainable practices and the role of agriculture in environmental protection.	2.1. Demonstrates a thorough understanding of sustainable agricultural practices, including crop rotation, agroforestry, organic farming, and conservation tillage, and their role in maintaining environmental health.
	2.2. Evaluates the benefits of integrated pest management (IPM) and other eco-friendly approaches to reduce the use of harmful chemicals and promote biodiversity
	 2.3. Analyzes the role of soil conservation techniques, such as contour farming, terracing, and cover cropping, in preventing soil erosion and maintaining soil fertility.
	2.4. Assesses the contribution of sustainable irrigation practices, such as drip irrigation and rainwater harvesting, to water conservation and efficient resource use.
	2.5. Investigates the role of agroecology in promoting resilience and sustainability in agricultural systems by integrating ecological principles into farming practices.
	2.6. Examines the potential of precision agriculture technologies in optimizing resource use, minimizing waste, and enhancing productivity in an environmentally responsible manner.
	2.7. Explores the importance of sustainable livestock management practices, including rotational grazing, waste management, and feed efficiency, in reducing the environmental impact of animal farming.
	2.8. Identifies the role of agriculture in carbon sequestration and its potential to mitigate climate change through practices like agroforestry and soil carbon management.
	2.9. Proposes strategies for scaling up sustainable agriculture and integrating it into broader environmental protection efforts, considering economic, social, and policy aspects.

AGE0001-7 Mathematics for Engineers

The aim of this study unit is to equip students with the mathematical skills necessary to solve complex engineering problems in agricultural systems. It focuses on the application of algebra, calculus, and statistics to analyze and model agricultural engineering challenges. Students will develop the ability to use mathematical techniques to optimize design, improve processes, and enhance decision-making in agricultural engineering projects.

Learning Outcome:	Assessment Criteria:
1. Apply mathematical techniques to solve	1.1. Demonstrates a thorough understanding of
engineering problems in agriculture.	mathematical principles and techniques
	relevant to agricultural engineering problems.
	1.2. Applies appropriate mathematical methods
	(e.g., algebra, calculus, differential equations,
	linear programming) to analyze and solve
	engineering challenges in agriculture.
	1.3. Accurately interprets agricultural data,
	formulating mathematical models to represent
	real-world scenarios.
	1.4. Selects and utilizes advanced mathematical
	tools (e.g., numerical methods, statistical
	analysis) for solving complex engineering
	problems in agricultural systems.
	1.5. Effectively solves optimization problems,
	considering agricultural constraints such as
	resource availability, environmental impact,
	and economic feasibility.
	1.6. Evaluates the accuracy and reliability of
	mathematical models and solutions, validating
	results through comparison with experimental
	or real-world data.
	1.7. Integrates interdisciplinary knowledge (e.g.,
	biology, physics, economics) with
	mathematical techniques to address
	multifaceted agricultural engineering
	problems.
	1.8. Demonstrates the ability to communicate
	mathematical solutions and methodologies
	clearly and effectively to both technical and
	non-technical stakeholders.
	1.9. Continuously updates mathematical
	techniques and approaches to incorporate
	emerging trends and technologies in
	agricultural engineering.
2. Develop skills in algebra, calculus, and statistics	2.1. Demonstrates proficiency in algebra, calculus,
for agricultural engineering applications.	and statistics to solve agricultural engineering
	problems.

 2.2. Applies algebraic methods to model and analyze agricultural systems, such as crop yield prediction and irrigation efficiency. 2.3. Utilizes calculus to solve optimization problems related to resource allocation, system design, and performance analysis in
agriculture. 2.4. Uses statistical techniques to analyze agricultural data, ensuring accurate
engineering projects. 2.5. Effectively applies multivariable calculus to model and optimize complex agricultural
 2.6. Integrates statistical methods to design experiments, analyze variability, and ensure the reliability of engineering solutions in agricultural contexts.
2.7. Demonstrates the ability to solve real-world agricultural engineering problems using a combination of algebra, calculus, and statistics.
2.8. Continuously applies advanced mathematical concepts to enhance the efficiency and sustainability of agricultural engineering systems.
2.9. Communicates mathematical solutions and findings clearly, making them accessible to both technical and non-technical stakeholders in agricultural engineering.

AGE0001-8 Fundamentals of Agricultural Economics

The aim of this study unit is to provide students with a solid understanding of the economic principles that govern agricultural systems. It focuses on key concepts such as supply and demand, market dynamics, and cost-benefit analysis, helping students analyze and make informed decisions in farming practices. The unit equips students with the tools to evaluate the financial viability of agricultural operations and implement strategies that enhance the economic sustainability of farms.

Learning Outcome:	Assessment Criteria:
1. Understand the economic principles in agricultural	1.1. Demonstrates a clear understanding of
systems.	fundamental economic principles and their
	application to agricultural systems.
	1.2. Analyzes the impact of supply and demand
	dynamics on agricultural production, pricing,
	and resource allocation.
	1.3. Applies cost-benefit analysis to assess the
	economic viability of agricultural engineering
	projects and technologies.
	1.4. Evaluates the role of market structures, such
	as monopolies and competitive markets, in
	influencing agricultural system efficiency and
	sustainability.
	1.5. Understands the economic implications of
	agricultural policies, subsidies, and trade
	regulations on local and global agricultural
	Indikels.
	1.0. Assesses the infancial reasibility of agricultural
	infrastructure and resource management
	1.7 Integrates economic models with agricultural
	engineering to ontimize the allocation of
	resources, improve productivity, and enhance
	profitability.
	1.8. Evaluates the environmental and social costs
	of agricultural practices, balancing economic
	objectives with sustainability goals.
	1.9. Communicates economic analyses and findings
	effectively to stakeholders, providing insights
	that inform decision-making in agricultural
	engineering projects.
2. Learn the concepts of supply, demand, and cost-	2.1. Demonstrates a comprehensive understanding
benefit analysis in farming practices.	of supply and demand principles and their
	influence on agricultural production and
	pricing.
	2.2. Applies supply and demand concepts to
	evaluate the effects of market nuctuations on

farming practices and decision-making
2.2. Understands the factors that shift supply and
2.3. Understands the factors that shift supply and
demand curves in the context of agricultural
commodities, including seasonal variations,
weather conditions, and technological
advancements.
2.4. Effectively applies cost-benefit analysis to
evaluate farming practices, considering both
economic returns and environmental or social
impacts.
2.5. Assesses the financial implications of different
farming practices, including the costs of inputs
(e.g., labor, equipment, seeds) and the
benefits derived from crop yields and product
sales.
2.6. Uses cost-benefit analysis to compare
alternative farming methods, technologies, or
crop choices to determine the most
economically viable option.
2.7. Evaluates the role of government policies.
subsidies, and market interventions in shaping
supply demand and the cost-benefit
outcomes for farmers
2.8 Demonstrates the ability to integrate supply
and demand concents with cost-benefit
and demand concepts with cost benefit
farm profitability
2.0 Communicator findings from supply demand
2.5. Communicates minings from supply, demand,
and cost-benefit analyses effectively to
stakenoiders, racilitating informed decision-
making in farming practices.

AGE0001-9 Introduction to Renewable Energy in Agriculture

The aim of this study unit is to introduce students to the principles and applications of renewable energy sources in agriculture, focusing on solar, wind, and bioenergy technologies. It emphasizes the role of these renewable energy systems in enhancing farm operations, improving energy efficiency, and promoting sustainability. Students will gain a foundational understanding of how to integrate renewable energy solutions into agricultural practices to reduce reliance on non-renewable resources and contribute to environmentally responsible farming.

Learning Outcome:	Assessment Criteria:
1. Learn about renewable energy sources and their	1.1. Demonstrates a comprehensive understanding
applications in agriculture.	of various renewable energy sources (solar,
	wind, biomass, geothermal, etc.) and their
	potential applications in agriculture.
	1.2. Analyzes the environmental, economic, and
	social impacts of renewable energy adoption
	in agricultural practices.
	1.3. Evaluates the feasibility and effectiveness of
	renewable energy solutions in reducing energy
	costs and enhancing sustainability in
	agriculture.
	1.4. Identifies key technological innovations in
	renewable energy that can be applied to
	farming, including irrigation systems, crop
	drying, and greenhouse heating.
	1.5. Assesses the challenges and barriers to the
	implementation of renewable energy in
	agricultural settings, including cost,
	infrastructure, and policy limitations.
	1.6. Examines case studies of successful integration
	of renewable energy solutions in agricultural
	operations across different regions and
	climates.
	1.7. Proposes practical strategies for integrating
	renewable energy into agricultural production
	systems, considering local context and
	available resources.
	1.8. Demonstrates an understanding of
	government policies, incentives, and global
	trends that support the adoption of renewable
	energy in agriculture.
	1.9. Effectively communicates the benefits and
	potential of renewable energy in agriculture to
	diverse stakeholders, including farmers,
	policymakers, and investors.
2 Understand the principles of solar wind and	2.1 Demonstrates a thorough understanding of
bioenergy for farm operations.	the fundamental principles of solar energy.

 including photovoltaic systems, solar thermal applications, and their suitability for farm operations. 2.2. Explains the mechanics of wind energy, including wind turbine technology, site selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
 applications, and their suitability for farm operations. 2.2. Explains the mechanics of wind energy, including wind turbine technology, site selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
operations. 2.2. Explains the mechanics of wind energy, including wind turbine technology, site selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
 2.2. Explains the mechanics of wind energy, including wind turbine technology, site selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
including wind turbine technology, site selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
selection, and its application in powering agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
agricultural machinery and irrigation systems. 2.3. Describes the principles of bioenergy,
2.3. Describes the principles of bioenergy,
2.3. Describes the principles of bioenergy,
including the production of biogas, biofuels,
and biomass energy, and their role in reducing
dependence on fossil fuels in farming.
2.4. Analyzes the potential of each renewable
energy source (solar, wind, bioenergy) in
improving farm energy efficiency,
sustainability, and reducing operational costs.
2.5. Evaluates the technical and economic viability
of integrating solar, wind, and bioenergy
systems into farm operations based on factors
such as location scale and available
2.6. Identifies key challenges in the adoption of
solar wind and bioenergy technologies in
agriculture including technical limitations
agriculture, including technical limitations,
infrastructure requirements, and economic
considerations.
2.7. Assesses the environmental benefits of
adopting renewable energy sources in farm
operations, including reduced greenhouse gas
emissions and resource conservation.
2.8. Explores emerging technologies and trends in
solar, wind, and bioenergy that could further
enhance farm productivity and sustainability.
2.9. Communicates effectively the principles and
advantages of solar, wind, and bioenergy
systems to stakeholders in the agricultural
sector, including farmers, agribusinesses, and
policymakers.

AGE0001-10 Agricultural Chemistry

The aim of this study unit is to provide students with a comprehensive understanding of the chemical processes that underpin agricultural practices. It focuses on the role of fertilizers, pesticides, and soil amendments in enhancing crop production, improving soil health, and managing pests. Students will learn how to apply chemical principles to optimize agricultural inputs and ensure sustainable, efficient crop management while minimizing environmental impact.

Learning Outcome:	Assessment Criteria:
1. Understand the chemical processes involved in	1.1. Demonstrates a comprehensive understanding
agriculture.	of the fundamental chemical processes
	nivolved in son remitiy, nutrient cycling, and
	1.2 Explains the role of essential nutrients
	(macronutrients and micronutrients) in plant
	development and the chemical reactions that
	facilitate nutrient untake and assimilation.
	1.3. Analyzes the chemical processes involved in
	soil-plant-water interactions, including soil pH,
	ion exchange, and the impact of soil
	amendments on plant health.
	1.4. Understands the chemical principles behind
	the use of fertilizers, pesticides, and
	herbicides, including their composition, mode
	of action, and potential environmental
	impacts.
	1.5. Describes the biochemical processes of
	photosynthesis, respiration, and transpiration
	in plants and their importance for agricultural
	productivity.
	1.6. Evaluates the role of organic matter decomposition in soil chemistry and its impact
	on soil structure microhial activity and
	nutrient availability
	1.7. Identifies the chemical processes involved in
	the fermentation and production of biofuels
	and biogas from agricultural residues and
	waste.
	1.8. Assesses the impact of chemical imbalances in
	the soil and water on crop yields, plant health,
	and ecosystem sustainability.
	1.9. Applies knowledge of chemical processes to
	improve agricultural practices, such as
	optimizing irrigation, reducing chemical inputs,
	and promoting sustainable farming methods.
2. Learn the role of fertilizers, pesticides, and soil	2.1. Demonstrates a comprehensive understanding
amendments in crop production.	of the different types of fertilizers (organic,

synthetic, slow-release) and their role in promoting soil fertility and supporting plant growth.
2.2. Explains the chemical composition and mechanisms of action of various pesticides, including insecticides, herbicides, and
fungicides, and their impact on crop protection.
2.3. Analyzes the benefits and risks associated with the use of fertilizers, pesticides, and soil amendments, including potential environmental, health, and economic effects.
2.4. Assesses the importance of balanced nutrient
management in crop production, considering the optimal use of fertilizers and soil
amendments to avoid nutrient deficiencies or
2.5 Evaluates the role of soil amendments (such as
lime, compost, and organic matter) in
improving soil structure, enhancing water
retention, and promoting microbial activity for healthier crops.
2.6. Understands the principles of integrated pest management (IPM) and the role of biological control, crop rotation, and other sustainable practices in reducing reliance on chemical pesticides.
2.7. Identifies the impact of fertilizer and pesticide
overuse on soil health, water quality, and biodiversity, and explores alternative sustainable practices for minimizing negative
effects.
2.8. Explores the role of precision agriculture
technologies in optimizing the use of
fertilizers, pesticides, and soil amendments for maximum efficiency and minimal
environmental impact.
2.9. Effectively communicates the importance of
proper fertilizer, pesticide, and soil
amenument application to farmers and stakeholders emphasizing the need for
sustainable and responsible agricultural
practices.

AGE0001-11 Engineering Drawing and CAD

The aim of this study unit is to equip students with the skills to interpret and create technical drawings and schematics essential for agricultural engineering projects. It focuses on developing proficiency in using Computer-Aided Design (CAD) software to design and model agricultural systems, machinery, and structures. Students will gain the ability to produce precise, detailed engineering designs that support the development of innovative solutions in agricultural engineering.

Learning Outcome:	Assessment Criteria:
1. Learn to interpret and create technical	1.1. Demonstrates the ability to accurately
drawings and schematics.	interpret technical drawings, including
	understanding symbols, scales, dimensions,
	and annotations used in agricultural
	equipment and infrastructure designs.
	1.2. Applies knowledge of drafting standards and
	conventions to read and analyze schematics
	for farm machinery, irrigation systems,
	renewable energy installations, and other
	agricultural systems.
	1.3. Understands the principles of design and
	layout in technical drawings, including the use
	of proper symbols, line types, and labeling to
	communicate engineering concepts
	effectively.
	1.4. Creates clear and precise technical drawings
	and schematics for agricultural systems,
	incorporating relevant details such as material
	specifications, dimensions, and functional
	components.
	1.5. Utilizes CAD software or other tools to develop
	technical drawings, ensuring accuracy,
	scalability, and ease of interpretation.
	1.6. Assesses the functionality and efficiency of
	designs based on technical drawings, ensuring
	that all components and systems are logically
	represented and aligned with operational
	requirements.
	1.7. Explains the significance of technical drawings
	in the planning, installation, and maintenance
	of agricultural systems, emphasizing their role
	in improving communication and reducing
	errors.
	1.8. Demonstrates an understanding of how to
	create and interpret electrical, mechanical,
	and plumbing schematics for agricultural
	operations, including renewable energy
	systems and irrigation networks.

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

	1.9. Communicates effectively with engineers,
	designers, and other stakeholders using
	technical drawings, ensuring a shared
	understanding of system designs and
	requirements.
2 Develop skills in using CAD software for	2.1 Demonstrates proficiency in using CAD
2. Develop skins in using end software for	(Computer-Aided Design) software to create
agricultural engineering design.	detailed and accurate designs for agricultural
	sustance including machinery infrastructure
	systems, including machinery, innastructure,
	and renewable energy installations.
	2.2. Understands the key features and tools of CAD
	software, such as drawing, modeling,
	dimensioning, and annotation, and applies
	them effectively in agricultural engineering
	design.
	2.3. Creates 2D and 3D models of agricultural
	equipment, irrigation systems, and farm
	layouts, ensuring proper scale, proportions,
	and functionality.
	2.4. Applies principles of agricultural engineering
	to design efficient, cost-effective, and
	sustainable systems using CAD, considering
	factors such as materials, energy use, and
	environmental impact.
	2.5. Integrates technical specifications, including
	dimensions, tolerances, and materials, into
	CAD designs to ensure compatibility with
	manufacturing and installation processes.
	2.6. Utilizes CAD software to perform simulations
	and analysis to optimize designs for
	agricultural applications.
	2.7. Collaborates with team members and
	stakeholders, using CAD files to communicate
	design ideas, make modifications, and ensure
	that the final design meets all technical and
	operational requirements
	2.8 Demonstrates the ability to troubleshoot and
	resolve design issues within CAD software
	ensuring the accuracy and functionality of
	agricultural engineering designs
	agricultural engineering designs.
	2.3. Reeps up-to-uate with advancements in CAD
	sortware tools and techniques, incorporating
	new reatures and pest practices into
	agricultural design projects.

AGE0001-12 Workshop Practices in Agricultural Engineering

The aim of this study unit is to provide students with hands-on experience and practical skills in using tools and machinery commonly employed in agricultural engineering. It focuses on teaching students the proper safety protocols, workshop procedures, and maintenance practices to ensure efficient and safe operation of equipment. Through this unit, students will develop the technical competencies required to support agricultural engineering projects and contribute to the advancement of farming technologies.

Learning Outcome:	Assessment Criteria:
1. Gain practical skills in using tools and machinery	1.1. Demonstrates the ability to safely and
for agricultural engineering.	effectively operate a variety of agricultural
	engineering tools and machinery.
	1.2. Exhibits proficiency in the setup, calibration,
	and maintenance of agricultural equipment.
	1.3. Understands the operational principles and
	technical specifications of different machinery
	used in agricultural engineering.
	1.4. Applies industry-standard safety protocols and
	guidelines while handling tools and machinery.
	1.5. Troubleshoots and resolves basic mechanical
	issues in agricultural machinery with minimal
	supervision.
	1.6. Demonstrates the ability to perform routine
	maintenance and repairs on agricultural
	equipment to ensure optimal performance.
	1.7. Adapts to new technologies and equipment in
	the field of agricultural engineering with ease
	and efficiency.
	1.8. Maintains high standards of accuracy and
	quality when using machinery for agricultural
	tasks.
	1.9. Demonstrates effective time management and
	organizational skills when working with
	agricultural machinery on tasks.
2. Understand the safety protocols and workshop	2.1. Demonstrates a comprehensive understanding
procedures in agricultural engineering.	of safety protocols and risk management
	strategies in an agricultural engineering
	environment.
	2.2. Consistently follows established workshop
	safety procedures to ensure personal and
	team safety.
	2.3. Identifies potential hazards in the workshop
	and takes appropriate actions to mitigate risks.
	2.4. Understands the correct use of personal
	protective equipment (PPE) and ensures it is
	worn as required.

ICTQual Level 6 Diploma in Agriculture Engineering 360 Credits – Three Years

2.5. Demonstrates knowledge of emergency
procedures, including fire safety, first aid, and
machinery shutdown protocols.
2.6. Adheres to environmental safety standards to prevent contamination or accidents during
workshop operations.
2.7. Ensures that tools and machinery are properly
maintained and operated in compliance with safety regulations.
2.8. Displays awareness of relevant health and safety regulations and standards in the agricultural engineering industry.
2.9. Participates in safety training and
demonstrates an ongoing commitment to maintaining a safe working environment.

AGE0001-13 Advanced Soil and Water Management

The aim of this study unit is to equip students with advanced techniques in soil and water conservation, focusing on optimizing the management of these critical resources for sustainable agricultural production. It emphasizes understanding soil-water relationships and applying best practices in water resource management to enhance soil health, improve crop yields, and minimize environmental impact. Students will develop the skills to design and implement effective soil and water management strategies in diverse agricultural settings.

Learning Outcome:	Assessment Criteria:
1. Apply advanced techniques in soil and water conservation.	1.1. Demonstrates a thorough understanding of advanced soil and water conservation principles and techniques
	1.2. Applies appropriate methods for soil erosion
	control, including terracing, contour farming,
	and windbreaks, based on site-specific
	conditions.
	1.3. Implements effective water management
	strategies, such as rainwater harvesting,
	irrigation systems, and water storage
	techniques, to optimize resource use.
	1.4. Utilizes soil fertility management techniques
	to enhance soil health and prevent
	cropping and organic amendments
	1.5 Annlies modern technologies such as remote
	sensing and GIS, to assess and monitor soil and
	water conservation efforts.
	1.6. Designs and installs effective drainage systems
	to manage excess water and prevent soil
	erosion.
	1.7. Demonstrates the ability to assess the impact
	of conservation practices on local ecosystems
	and biodiversity.
	1.8. Collaborates with stakeholders, including
	communities to promote sustainable
	conservation practices
	1.9. Evaluates and adapts conservation strategies
	to address changing environmental conditions
	and climate change impacts.
2 Understand soil-water relationships and manage	2.1 Demonstrates a deen understanding of soil
water resources for ontimal agricultural	water relationships including the movement
production.	retention, and availability of water in different
	soil types.
	2.2. Analyzes soil properties such as texture,
	structure, and permeability to determine

optimal water management practices.
2.3. Applies irrigation methods that align with soil
characteristics and crop requirements to
ensure efficient water use.
2.4. Utilizes soil moisture monitoring tools and
techniques to assess and manage water
availability in agricultural systems.
2.5. Implements water conservation strategies,
including mulching, rainwater harvesting, and
efficient irrigation systems, to optimize water
use in agriculture.
2.6. Understands the impact of water stress on
crop growth and takes proactive measures to
mitigate water scarcity.
2.7. Designs and manages drainage systems to
prevent waterlogging and optimize water flow
in agricultural fields.
2.8. Incorporates sustainable water management
practices that preserve water quality and
prevent contamination.
2.9. Monitors and adapts water management
strategies based on seasonal variations,
climate conditions, and crop demands to
ensure optimal agricultural productivity.
1

AGE0001-14 Farm Power and Mechanization

The aim of this study unit is to provide students with a solid understanding of the principles behind farm power systems and their role in modern agriculture. It focuses on the operation, integration, and optimization of mechanized systems, including tractors, harvesters, and other farm machinery. Students will learn how to enhance the efficiency and productivity of agricultural operations through the effective use of mechanized systems while considering factors such as energy use, maintenance, and sustainability.

Learning Outcome:	Assessment Criteria:
1. Learn the principles of farm power systems.	1.1. Demonstrates a solid understanding of the fundamental principles behind farm power systems, including energy sources and mechanical power transmission.
	1.2. Understands the operation, components, and functions of internal combustion engines and electric motors used in agricultural machinery.
	1.3. Applies knowledge of power systems to select appropriate equipment for various agricultural tasks, ensuring efficiency and effectiveness.
	1.4. Demonstrates proficiency in the design and integration of power systems in agricultural machinery, including engines, hydraulics, and transmission systems.
	1.5. Understands the principles of torque, horsepower, and fuel efficiency in relation to farm power systems and machinery performance.
	1.6. Analyzes and interprets power requirements for specific agricultural tasks and adjusts systems to meet these demands.
	1.7. Applies maintenance and troubleshooting techniques to ensure the optimal functioning of power systems in farm machinery.
	 1.8. Understands the impact of power system efficiency on operational costs and environmental sustainability in agricultural practices.
	 1.9. Keeps abreast of advancements in farm power technologies and applies emerging innovations to enhance farm productivity and sustainability.
2. Understand the operation and integration of mechanized systems in agriculture.	2.1. Demonstrates a comprehensive understanding of the operation and functionality of various mechanized systems used in agriculture, including planting, harvesting, and irrigation systems.

2.2. Analyzes the integration of different
mechanized components, such as tractors,
harvesters, and automated systems, to
optimize farm operations.
2.3. Understands the interaction between
mechanized systems and agricultural
processes, ensuring efficiency in resource use
and productivity.
2.4. Applies knowledge of hydraulics, electronics,
and automation in the integration of
mechanized systems for seamless operation.
2.5. Assesses the compatibility of mechanized
systems with various crop types and farming
practices to ensure optimal performance.
2.6. Evaluates the environmental and economic
impacts of mechanized systems and identifies
opportunities for sustainability and cost
reduction.
2.7. Demonstrates the ability to troubleshoot and
ansure continuous and reliable eneration
2.8 Understands the role of precision agriculture
technologies such as GPS and data analytics
in enhancing the integration of mechanized
systems.
2.9. Stavs informed on the latest advancements in
agricultural machinery and automation
technologies to improve system integration
and farm productivity.

AGE0001-15 Agricultural Structures and Materials

The aim of this study unit is to provide students with a thorough understanding of the design and construction of agricultural structures, such as barns, greenhouses, and storage facilities. It focuses on the selection and application of appropriate materials for building durable, efficient, and sustainable agricultural buildings. Students will learn how to consider factors such as environmental conditions, functionality, and cost-effectiveness in the design process to support modern farming practices.

Learning Outcome:	Assessment Criteria:
1. Understand the design and construction of	1.1. Demonstrates comprehensive knowledge of
agricultural structures (e.g., barns, greenhouses).	the fundamental principles involved in the
	design and construction of agricultural
	structures, including barns, greenhouses, and
	related facilities.
	1.2. Identifies and evaluates the specific
	requirements of different agricultural
	structures based on intended use, climate
	conditions, and operational needs.
	1.3. Analyzes the materials commonly used in
	agricultural structures, considering factors
	such as durability, sustainability, cost-
	effectiveness, and environmental impact.
	1.4. Assesses the integration of structural
	elements, including foundations, walls, roofs,
	and ventilation systems, ensuring compliance
	with safety standards and building codes.
	1.5. Understands the role of environmental factors
	design of agricultural huildings and applies this
	knowledge to optimize performance and
	productivity
	1.6 Applies principles of energy efficiency and
	sustainability in the selection of materials
	design strategies, and technologies used in
	agricultural structures.
	1.7. Evaluates the potential for future expansion or
	modification of agricultural structures to meet
	evolving operational needs and technological
	advancements.
	1.8. Demonstrates the ability to assess the financial
	feasibility of construction projects, considering
	budget constraints, material costs, and labor
	requirements.
	1.9. Critically evaluates the risks and challenges
	associated with the construction of agricultural
	structures, including environmental.

	regulatory, and operational factors.
2. Learn about materials used in agricultural building	2.1. Demonstrates an in-depth understanding of
design.	the various materials used in agricultural building design, including their properties,
	 2.2. Identifies and compares common construction materials such as wood, steel, concrete, and advanced composites, considering their suitability for different agricultural
	applications.
	2.3. Evaluates the impact of environmental conditions (e.g., temperature, humidity, exposure to chemicals) on the selection of materials for durability and performance.
	2.4. Understands the principles of sustainability and energy efficiency in material selection, emphasizing renewable, recyclable, and locally sourced options.
	2.5. Analyzes the role of insulation materials in agricultural buildings, particularly for temperature control and energy conservation.
	2.6. Assesses the potential for material innovations, such as smart materials or eco- friendly alternatives, to enhance the functionality and environmental impact of agricultural buildings.
	2.7. Considers the cost-effectiveness of materials, balancing initial investment with long-term maintenance and operational costs.
	2.8. Demonstrates knowledge of the regulatory standards and codes that influence material selection for agricultural buildings.
	2.9. Evaluates the integration of materials in construction to ensure safety, stability, and structural integrity in agricultural environments.

AGE0001-16 Irrigation Systems Design

The aim of this study unit is to equip students with the knowledge and skills necessary to design efficient irrigation systems tailored to specific agricultural needs. It focuses on applying principles of soil science, climate considerations, and crop water requirements to develop optimized irrigation plans. Students will learn to design systems that maximize water use efficiency, promote sustainable agricultural practices, and enhance crop productivity.

Learning Outcome:	Assessment Criteria:
1. Learn the design principles for efficient irrigation systems.	1.1. Demonstrates a thorough understanding of the fundamental design principles for efficient irrigation systems, including water source,
	distribution methods, and system components.
	1.2. Analyzes the different types of irrigation systems (e.g., drip, sprinkler, surface irrigation) and evaluates their suitability based on crop type, soil conditions, and climate.
	1.3. Applies principles of water conservation and efficiency in irrigation design, considering factors such as water usage, pressure management, and system automation.
	 Assesses the role of soil moisture monitoring and weather data integration in optimizing irrigation scheduling and reducing water wastage.
	1.5. Understands the importance of designing irrigation systems that minimize energy consumption while ensuring adequate water delivery to crops.
	 Evaluates the economic feasibility of various irrigation system designs, including installation, maintenance, and operational costs.
	1.7. Demonstrates knowledge of modern technologies such as smart irrigation systems, sensors, and remote monitoring to improve system efficiency and sustainability.
	1.8. Considers environmental impacts in the design process, ensuring that irrigation systems are sustainable and compliant with water use regulations.
	1.9. Analyzes potential risks and challenges in irrigation system design, including water availability, system failures, and maintenance requirements.

2 Apply knowledge of soil climate and crop	2.1 Demonstrates the ability to analyze soil
requirements to develop irrigation plans.	characteristics, including texture, permeability, and water-holding capacity, to inform
	irrigation planning and ensure effective water
	distribution.
	2.2. Applies knowledge of local climate conditions,
	such as rainfall patterns, temperature, and
	humidity, to develop irrigation plans that
	different seasons.
	2.3. Understands the specific water requirements
	of various crops and tailor's irrigation plans to
	meet their needs while minimizing water wastage.
	2.4. Evaluates crop growth stages and adapts
	irrigation schedules to ensure appropriate
	water application at critical times, such as
	germination, flowering, and fruiting.
	climate forecasting tools to create dynamic
	irrigation schedules that adjust based on real-
	time environmental conditions.
	2.6. Considers the potential for water stress and
	adjusts irrigation strategies to prevent under-
	irrigation or over-irrigation, promoting healthy
	crop growth.
	2.7. Develops irrigation plans that incorporate
	sprinkler) suitable for different crop types and
	field layouts
	2.8. Assesses the economic and environmental
	impacts of irrigation plans, aiming for a
	balance between optimal crop production and
	sustainable water use.
	2.9. Ensures that irrigation plans comply with
	relevant local regulations and best practices in
	water management and conservation.

AGE0001-17 Introduction to Precision Agriculture

The aim of this study unit is to introduce students to the principles and technologies behind precision agriculture, focusing on how data-driven approaches can enhance crop management and farming efficiency. It emphasizes the role of advanced technologies such as GPS, sensors, and data analytics in optimizing resource use, improving yields, and promoting sustainable agricultural practices. Students will learn how to leverage technology to make informed decisions and improve overall farm productivity.

Learning Outcome:	Assessment Criteria:
1. Understand the role of technology in precision	1.1. Demonstrates a comprehensive understanding
farming.	of how technology contributes to the
	efficiency and sustainability of precision
	farming practices.
	1.2. Identifies and explains key technological
	innovations used in precision farming, such as
	GPS, sensors, drones, and data analytics.
	1.3. Analyzes the impact of technology on crop
	yield optimization, resource management, and
	environmental sustainability.
	1.4. Evaluates the role of real-time data collection
	and analysis in improving decision-making
	processes within farming operations.
	1.5. Demonstrates awareness of how technology
	enables targeted application of inputs like
	water, fertilizers, and pesticides, reducing
	Waste and increasing cost-efficiency.
	1.0. Assesses the integration of automation and
	impact on labor officionsy and operational
	costs
	1.7 Critically examines the challenges and barriers
	to implementing technology in precision
	farming such as cost infrastructure and
	training requirements.
	1.8. Understands the ethical considerations related
	to the use of technology in farming, including
	data privacy, security, and accessibility for
	farmers.
	1.9. Communicates effectively how technology in
	precision farming aligns with global
	sustainability goals and food security
	challenges.
2 Learn how data driven decisions can improve cren	2.1 Demonstrates understanding of key concents
2. Learn now data-univen decisions can improve crop	in data-driven decision-making and its
management and entielly.	annlication to crop management
	2.2 Analyzes and interprets data from various
	2.2. Analyzes and interprets data from Various

sources (e.g., satellite imagery, sensors, weather forecasts) to identify patterns and
 2.3. Evaluates the potential impact of different data-driven techniques on crop yield, resource
2.4. Integrates data-driven insights into practical strategies for pest management, irrigation
2.5. Assesses the role of precision agriculture tools and technologies in enhancing crop productivity and sustainability.
2.6. Effectively communicates the benefits and challenges of implementing data-driven approaches in crop management to diverse stakeholders.
2.7. Demonstrates proficiency in using software or platforms designed for agricultural data analysis and decision support systems.
2.8. Critically evaluates the ethical, economic, and environmental implications of data-driven farming practices.
2.9. Proposes recommendations for improving crop management practices through data- driven decision-making, considering local agricultural contexts and resources.

AGE0001-18 Agricultural Waste Management

The aim of this study unit is to provide students with a comprehensive understanding of agricultural waste management, focusing on effective strategies for reducing, recycling, and repurposing agricultural waste. It covers methods for converting waste into valuable products, such as bioenergy, compost, and other sustainable materials. The unit emphasizes the importance of minimizing environmental impact while promoting resource efficiency and sustainability in agricultural practices.

Learning Outcome:	Assessment Criteria:
1. Understand the management and recycling of	1.1. Demonstrates knowledge of various types of
agricultural waste.	agricultural waste, including organic, inorganic,
	and hazardous materials.
	1.2. Understands the environmental impact of
	improper disposal of agricultural waste and
	the importance of waste management in
	sustainable agriculture.
	1.3. Analyzes different waste management
	digestion and bioges production for recycling
	agricultural by products
	1.4 Assesses the notential for recycling agricultural
	waste into valuable products, such as organic
	fertilizers, bioenergy, or animal feed.
	1.5. Evaluates the role of waste management
	practices in reducing pollution, conserving
	resources, and improving farm profitability.
	1.6. Identifies relevant technologies and
	equipment used in the collection, sorting, and
	processing of agricultural waste.
	1.7. Critically examines policies, regulations, and
	industry standards related to agricultural
	waste management and recycling.
	1.8. Promotes awareness of best practices in waste
	reduction, recycling, and reusing agricultural
	by-products among farmers and agricultural
	professionals.
	1.9. Proposes practical strategies for integrating
	systems to enhance sustainability and reduce
	operational costs
2. Learn methods of reducing waste and converting it	2.1. Demonstrates a clear understanding of
into useful products.	different types of waste generated in
	agricultural, industrial, and domestic contexts.
	2.2. Evaluates various methods of waste reduction,
	including waste prevention, minimization
	techniques, and efficient resource use.

2.3. Analyzes the role of circular economy principles in converting waste into valuable
products, emphasizing sustainability and resource conservation
2.4 Understands key technologies and processes
for waste conversion, such as composting,
 Assesses the feasibility of converting organic waste into useful products like biofertilizers, bioplastics, or bioenergy (e.g., biogas, biodiesel).
2.6. Identifies economic and environmental benefits of waste-to-product approaches, including cost savings, reduced landfill dependence, and lower carbon footprint.
2.7. Explores innovations in waste conversion, including advanced techniques like waste-to- chemicals, waste-to-food, and waste-to-water technologies.
2.8. Critically examines the challenges and barriers in waste reduction and conversion, such as technical limitations, economic viability, and regulatory constraints.
2.9. Proposes actionable solutions or strategies for integrating waste reduction and conversion into sustainable business or production systems.

AGE0001-19 Crop Protection Technologies

The aim of this study unit is to provide students with a thorough understanding of crop protection technologies, focusing on effective pest and disease management techniques. It covers the use of crop protection chemicals, biological control methods, and integrated pest management strategies. The unit emphasizes sustainable practices in safeguarding crops, enhancing productivity, and minimizing environmental impact through the application of innovative and responsible crop protection solutions.

Learning Outcome:	Assessment Criteria:
 Learn about pest and disease management techniques. 	1.1. Demonstrates a thorough understanding of common pests and diseases affecting crops, including their life cycles, symptoms, and economic impact.
	1.2. Evaluates various pest and disease management techniques, including chemical, biological, and cultural control methods.
	1.3. Analyzes the principles and practices of Integrated Pest Management (IPM) and its role in minimizing pest damage while reducing environmental impact.
	1.4. Understands the use of resistant crop varieties, crop rotation, and companion planting as preventive measures against pests and diseases.
	1.5. Assesses the effectiveness and risks of chemical control methods, including the appropriate use of pesticides and their impact on human health, beneficial organisms, and ecosystems.
	1.6. Explores biological control methods, such as the use of natural predators, parasites, or microbial agents to control pest populations.
	1.7. Demonstrates proficiency in using modern technologies like remote sensing, drones, and pest-monitoring systems for early detection and targeted pest management.
	1.8. Critically evaluates the role of soil health, water management, and proper fertilization in reducing susceptibility to pest and disease outbreaks.
	1.9. Proposes sustainable and cost-effective pest and disease management strategies tailored to specific crops, environments, and farming practices.
2. Understand the use of crop protection chemicals	2.1. Demonstrates a comprehensive understanding
and biological control methods.	of the different types of crop protection

chemicals, including pesticides, herbicides,
fungicides, and their modes of action.
2.2. Evaluates the appropriate use, application
methods, and safety protocols for chemical
crop protection to minimize risks to human
health, non-target organisms, and the
environment.
2.3 Understands the concept of pesticide
resistance and the importance of integrated
strategies to prevent and manage resistance in
not nonulations
2.4 Accesses the role of biological control
2.4. Assesses the fole of biological control
methods, including natural predators,
parasitolos, and beneficial microorganisms, in
managing pest and disease outbreaks.
2.5. Critically evaluates the effectiveness and
limitations of biological control methods
compared to chemical alternatives,
considering factors such as cost, sustainability,
and ecological impact.
2.6. Demonstrates knowledge of how crop
protection chemicals and biological control
methods can be integrated within an
Integrated Pest Management (IPM) framework
to reduce reliance on chemical treatments.
2.7. Explores advances in biotechnology, such as
genetically modified crops with built-in pest
resistance or biopesticides derived from
natural sources.
2.8. Understands the regulatory frameworks
governing the use of crop protection
chemicals, including safety standards, residue
limits, and environmental impact assessments.
2.9. Proposes sustainable crop protection
strategies that balance the benefits of
chemical and biological controls to ontimize
cron vield while minimizing negative
environmental effects
environmental enects.

AGE0001-20 Advanced Farm Machinery Operations

The aim of this study unit is to equip students with advanced skills in operating and managing complex farm machinery, focusing on optimizing their performance in modern agricultural systems. It emphasizes the importance of maintenance practices to enhance the lifespan, efficiency, and reliability of farm equipment. Students will gain practical experience in the safe operation, troubleshooting, and upkeep of advanced machinery, contributing to increased productivity and sustainability in farming operations.

Learning Outcome: Ass	sessment Criteria:
1. Develop advanced skills in operating complex farm	1.1. Demonstrates proficiency in operating a wide
machinery.	range of complex farm machinery, including
	tractors, harvesters, sprayers, planters, and
	tillage equipment.
	1.2. Understands the technical specifications,
	functions, and maintenance requirements of
	various types of machinery used in modern
	farming operations.
	1.3. Applies advanced knowledge of machine
	calibration, setting adjustments, and operation
	to ensure optimal performance and efficiency in different farming tasks
	1.4 Effectively manages machinery to ontimize
	field operations, reduce fuel consumption, and
	minimize wear and tear on equipment.
	1.5. Demonstrates skill in troubleshooting common
	machinery malfunctions and performing minor
	repairs or adjustments to ensure continuous
	operations.
	1.6. Understands the integration of technology
	with farm machinery, including GPS guidance
	systems, auto-steering, variable rate
	technology, and sensor-based automation.
	1.7. Applies safety protocols and best practices for
	machinery operation, including proper
	handling, maintenance, and adherence to
	occupational safety standards.
	1.8. Assesses the environmental impact of
	machinery use, including soil compaction, fuel
	consumption, and emissions, and implements
	strategies to mitigate negative effects.
	1.9. Continuousiy updates knowledge on emerging
	improve operational efficiency and
	sustainability in farm management.
	2.4 Demonstration a serie subject of subject the

equipment, including engines, hydraulics,
2.2 Applies routing maintenance practices such as
2.2. Applies routine maintenance practices, such as
iubrication, cleaning, and replacing
consumables (filters, belts, and noses), to
ensure optimal equipment performance.
2.3. Understands and follows manufacturer-
recommended service schedules and
maintenance intervals for various types of
farm machinery.
2.4. Performs systematic inspections to identify
early signs of wear and tear, addressing
potential issues before they lead to equipment
failure or downtime.
2.5. Implements preventive maintenance
strategies, such as checking fluid levels,
calibrating machinery, and adjusting settings
to maintain peak efficiency.
2.6. Demonstrates proficiency in troubleshooting
and diagnosing mechanical, electrical, or
hydraulic issues in farm equipment, and takes
corrective actions when necessary.
2.7. Applies proper storage and protection
techniques to extend the lifespan of
equipment during off-seasons, including
cleaning, rust prevention, and battery
maintenance.
2.8. Monitors the condition of tires, tracks, and
undercarriages, ensuring correct inflation and
alignment to improve fuel efficiency and
minimize operational costs.
2.9. Integrates technology, such as telematics or
diagnostic tools, to monitor equipment
performance and track maintenance needs in
real-time.

AGE0001-21 Principles of Agro-Processing

The aim of this study unit is to provide students with a comprehensive understanding of the principles and processes involved in agro-processing, focusing on the transformation of raw agricultural products into valueadded goods. It covers various processing technologies, including food and fiber processing, and emphasizes the role of innovation and efficiency in enhancing product quality, increasing market value, and supporting sustainable agricultural practices.

Learning Outcome:	Assessment Criteria:
1. Understand the processes involved in	1.1. Demonstrates a clear understanding of the
transforming raw agricultural products into value-	stages involved in processing raw agricultural
added products.	products, including harvesting, handling,
	storage, and transportation.
	1.2. Analyzes the principles of value addition,
	including the transformation of raw materials
	into processed goods that offer higher
	economic value and extended shelf life.
	1.3. Evaluates various processing techniques, such
	as fermentation, drying, freezing, milling, and
	packaging, and their impact on product quality
	and marketability.
	1.4. Understands the role of food safety and
	quality standards (e.g., HACCP, ISO, and local
	regulations) in the transformation of raw
	agricultural products into consumable or
	industrial products.
	1.5. Assesses the economic, environmental, and
	social benefits of value-added agriculture,
	including increased income for farmers,
	reduced food waste, and enhanced product
	diversity.
	1.6. Identifies the technological innovations,
	machinery, and equipment required for the
	efficient transformation of raw agricultural
	products into value-added goods.
	1.7. Demonstrates awareness of market trends,
	stratogies that influence the domand for value
	added agricultural products
	1.8 Explores the supply chain and distribution
	1.0. Explores the supply chain and distribution
	products from production to consumers
	considering logistics retail and export
	markets.
	1.9. Proposes strategies for scaling up value-added
	product development, considering both small-
	scale and industrial processing systems

	tailored to different agricultural sectors.
2. Learn about processing technologies, including food and fiber processing.	2.1. Demonstrates an in-depth understanding of the various processing technologies used in food and fiber industries, including mechanical, thermal, chemical, and biological methods
	2.2. Analyzes the principles and applications of food processing techniques, such as canning, drying, pasteurization, fermentation, and freezing, to preserve and enhance food products.
	2.3. Evaluates the role of modern technologies in fiber processing, including spinning, weaving, and dyeing, and how these processes affect the quality and marketability of fiber products.
	2.4. Understands the role of machinery and automation in both food and fiber processing, optimizing efficiency, consistency, and product quality.
	2.5. Assesses the impact of processing technologies on product safety, shelf life, nutritional value, and sensory qualities in food products.
	2.6. Explores innovations in processing technologies, such as high-pressure processing, microwave-assisted drying, and biotechnology-driven processes like enzymatic treatments or GMOs.
	2.7. Demonstrates knowledge of sustainability practices in food and fiber processing, including waste reduction, energy-efficient technologies, and eco-friendly materials.
	2.8. Evaluates the economic viability and scalability of different processing methods for both small-scale and large-scale operations, considering cost, resource usage, and market demand
	2.9. Understands the regulatory standards and quality assurance systems (e.g., HACCP, GMP) that govern food and fiber processing industries to ensure consumer safety and product integrity.

AGE0001-22 Renewable Energy Technologies in Agriculture

The aim of this study unit is to provide students with an in-depth understanding of various renewable energy technologies and their practical applications in agriculture. It focuses on equipping students with the knowledge to design, integrate, and optimize renewable energy systems, such as solar, wind, and biomass, for use on farms. The unit emphasizes the role of renewable energy in enhancing sustainability, reducing operational costs, and improving energy efficiency in agricultural operations.

Learning Outcome:	Assessment Criteria:
1. Learn about various renewable energy technologies and their applications in farming	1.1. Demonstrates comprehensive understanding
technologies and then applications in farming.	including solar, wind, biomass, and geothermal
	energy, and their applications in agricultural
	contexts.
	1.2. Analyzes the suitability of various renewable
	energy technologies for specific farming
	environments, considering factors such as
	climate, farm size, and energy demand.
	1.3. Evaluates the environmental, economic, and
	solutions into farming operations
	1.4 Identifies challenges and barriers to the
	adoption of renewable energy technologies in
	farming, including technical, financial, and
	regulatory considerations.
	1.5. Assesses the potential for renewable energy
	technologies to enhance farm sustainability,
	reduce carbon footprint, and increase
	resilience to climate change.
	1.6. Applies knowledge of renewable energy
	improving energy efficiency and production in
	farming operations.
	1.7. Demonstrates ability to assess the technical
	feasibility, cost-effectiveness, and long-term
	viability of renewable energy solutions in
	farming.
	1.8. Demonstrates awareness of global trends,
	policies, and incentives related to renewable
	energy adoption in agriculture.
	impacts of renewable energy technologies on
	farming, providing clear recommendations for
	practical implementation.
2 Understand the design and integration of energy	2.1 Demonstrates a clear understanding of the
systems on farms.	principles and concepts involved in the design

of energy systems tailored for agricultural applications.
2.2. Analyzes the requirements of energy systems for various farming operations, including irrigation, heating, cooling, and mechanization, ensuring efficient energy use.
2.3. Assesses the integration of renewable and conventional energy sources in farming, considering energy demands, supply stability, and sustainability.
2.4. Evaluates the role of energy storage solutions (e.g., batteries, thermal storage) in optimizing energy availability and reducing operational costs on farms.
2.5. Identifies key technical factors influencing the selection and configuration of energy systems, such as energy generation, transmission, and distribution within the farm infrastructure.
2.6. Demonstrates knowledge of energy system control, monitoring, and automation to improve operational efficiency and reduce energy waste in farming systems.
2.7. Assesses the scalability and adaptability of energy systems for farms of different sizes, from smallholdings to large commercial operations.
2.8. Considers the environmental impact and regulatory standards for energy system design and integration, ensuring compliance with local and international guidelines.
2.9. Provides well-reasoned recommendations for optimizing energy system performance, based on a thorough understanding of farm-specific needs and technological capabilities.

AGE0001-23 Land Surveying and Mapping

The aim of this study unit is to equip students with the skills necessary for land surveying and mapping in the context of agricultural projects. It focuses on teaching students how to accurately survey land, create detailed maps, and utilize Geographic Information Systems (GIS) for effective land management. The unit emphasizes the application of these techniques to support decision-making, improve agricultural productivity, and optimize land use for sustainable farming practices.

Learning Outcome:	Assessment Criteria:
1. Develop skills in surveying land for agricultural	1.1. Demonstrates a solid understanding of land
projects.	surveying principles, tools, and techniques
	relevant to agricultural projects.
	1.2. Applies knowledge of topographical and soil
	surveys to assess land suitability for various
	agricultural uses, including crop production,
	livestock, and infrastructure development.
	1.3. Utilizes GPS, GIS, and other modern surveying
	technologies to collect and analyze spatial data
	for land evaluation and planning.
	1.4. Accurately measures land contours,
	elevations, and slopes to inform irrigation
	system design, drainage solutions, and land
	grading for agricultural purposes.
	1.5. Evaluates soil characteristics, including
	fertility, drainage, and compaction, to
	determine optimal land use and resource
	management strategies.
	1.6. Assesses environmental factors such as water
	availability, climate conditions, and potential
	hazards (e.g., flooding, erosion) to guide land-
	use decisions.
	1.7. Develops land survey reports that clearly
	communicate findings, including
	recommendations for land development,
	conservation, and resource allocation.
	1.8. Demonstrates proliciency in creating detailed
	infrastructure including planting zones
	irrigation networks and access roads
	1.9 Adheres to best practices in land surveying
	ensuring accuracy ethical considerations and
	compliance with local regulations and industry
	standards.
2. Learn how to create maps and use geographic	2.1. Demonstrates proficiency in using Geographic
information systems (GIS) for agricultural	Information Systems (GIS) software to create,
purposes.	analyze, and interpret spatial data for

agricultural applications.
2.2. Understands the principles of cartography and
map design, ensuring the creation of clear,
accurate, and useful maps for agricultural
decision-making.
2.3 Applies GIS techniques to assess and visualize
land use natterns soil types cron
distributions and environmental factors that
affect farm productivity
2.4 Integrates remets sensing data (e.g. satellite
2.4. Integrates remote sensing data (e.g., satellite
imagery, drones) with GIS to monitor crop
health, track environmental changes, and
optimize resource use.
2.5. Utilizes GIS to design and plan agricultural
infrastructure, including irrigation systems,
drainage networks, and farm layout
optimization.
2.6. Analyzes spatial data to assess land suitability
for different crops, predict yield potential, and
identify areas for improvement or
conservation.
2.7. Applies GIS-based tools for precision
agriculture, including variable rate application
of fertilizers, water, and pesticides, to increase
efficiency and reduce environmental impact.
2.8. Uses GIS to monitor and manage natural
resources, such as water availability, soil
moisture, and vegetation health, for
sustainable farming practices.
2.9. Demonstrates the ability to generate detailed
GIS reports and visualizations to support farm
management decisions and communicate
findings to stakeholders

AGE0001-24 Practical Training in Agricultural Engineering

The aim of this study unit is to provide students with the opportunity to apply theoretical knowledge to real-world agricultural engineering scenarios. It focuses on gaining practical, hands-on experience with machinery, tools, and technology commonly used in the field, enhancing students' technical skills and preparing them for professional roles in agricultural engineering. The unit emphasizes problem-solving and innovation in real-world contexts, fostering the development of practical expertise in agricultural systems.

Learning Outcome:	Assessm	ent Criteria:
1. Apply theoretical knowledge in rea	al-world 1.1.	Demonstrates the ability to translate
agricultural engineering scenarios.		theoretical knowledge of agricultural
		engineering principles into practical solutions
		for real-world farming challenges.
	1.2.	Applies engineering concepts, such as
		thermodynamics, mechanics, and fluid
		dynamics, to design and optimize agricultural
		machinery, irrigation systems, and energy
		solutions.
	1.3.	Effectively integrates multidisciplinary
		knowledge (e.g., renewable energy, soil
		science, crop management) into engineering
		solutions tailored to specific agricultural
		environments and needs.
	1.4.	Analyzes and solves engineering problems
		related to farm infrastructure, such as
		drainage, water management, and equipment
		design, ensuring operational efficiency and
		sustainability.
	1.5.	Utilizes engineering tools and simulations to
		model and predict the performance of
		agricultural systems, validating assumptions
		with field data and real-world testing.
	1.6.	Identifies potential risks and challenges in
		implementing engineering solutions on farms,
		developing strategies to mitigate these issues
		while maintaining safety and compliance.
	1.7.	Works collaboratively with farmers,
		agronomists, and other stakeholders to
		understand their needs and adapt engineering
		solutions to optimize productivity and reduce
		costs.
	1.8.	Demonstrates a hands-on approach by
		conducting field tests, collecting data, and
		refining engineering designs based on real-
		world performance feedback.
	1.9.	Evaluates the long-term sustainability and
		scalability of engineering solutions, ensuring

	they align with the economic, environmental,
	and social goals of the agricultural industry.
2 Gain hands-on experience with machinery tools	2.1 Demonstrates the ability to operate maintain
and technology in the field	and troubleshoot a variety of agricultural
and technology in the neta.	machinery including tractors baryesters
	irrigation systems and other field equipment
	2.2. Applies safety protocols and industry best
	practices while handling machinery and tools
	to minimize risks and ensure safe working
	conditions in the field.
	2.3. Gains practical experience in calibrating and
	adjusting agricultural machinery for optimal
	performance in different farming operations,
	such as planting, spraying, and harvesting.
	2.4. Develops proficiency in using advanced
	agricultural technologies, such as GPS-guided
	equipment, drones, and automated systems,
	to enhance productivity and precision.
	2.5. Troubleshoots common mechanical and
	technological issues, applying technical
	knowledge to make real-time repairs or
	adjustments in the field.
	2.6. Demonstrates the ability to assess and
	signs of wear inefficiency or damage and
	signs of wear, memorially, of damage, and
	machinery lifesnan
	2.7 Works with digital tools and software to
	monitor and manage machinery data.
	improving operational efficiency, reducing
	downtime, and optimizing field operations.
	2.8. Understands the integration of different
	technological tools (e.g., sensors, IoT devices)
	with machinery to collect data and support
	precision agriculture practices.
	2.9. Reflects on hands-on experiences, analyzing
	the performance and impact of machinery and
	tools on agricultural productivity,
	sustainability, and resource efficiency.

AGE0001-25 Sustainable Agriculture Practices

The aim of this study unit is to provide students with a comprehensive understanding of sustainable agriculture practices and the principles of environmental stewardship. It focuses on equipping students with the knowledge and techniques to enhance farm productivity while minimizing environmental impact, promoting resource conservation, and ensuring long-term sustainability in agricultural systems. Students will learn how to implement practices that balance economic, environmental, and social factors for sustainable farming.

Learning Outcome:	Assessment Criteria:
1. Understand the principles of sustainable farming	1.1. Demonstrates a comprehensive understanding
and environmental stewardship.	of sustainable farming practices, including crop
	rotation, conservation tillage, agroforestry,
	and integrated pest management.
	1.2. Evaluates the principles of environmental
	stewardship, emphasizing the responsible
	management of natural resources, such as soil,
	water, and biodiversity, in agricultural
	systems.
	1.3. Analyzes the environmental impacts of
	farming activities and identifies strategies to
	minimize carbon footprints, water usage, and
	waste generation while maintaining farm
	productivity.
	1.4. Applies knowledge of sustainable practices to
	enhance soil health, reduce erosion, and
	prevent land degradation, ensuring long-term
	farm viability.
	1.5. Identifies and assesses reflewable energy
	solutions, such as solar and wind power, that
	reduce dependency on pon-renewable energy
	sources
	1.6 Demonstrates an understanding of water
	conservation techniques, including efficient
	irrigation systems, rainwater harvesting, and
	watershed management, to protect water
	resources.
	1.7. Understands the role of biodiversity in farming
	systems and promotes practices that enhance
	habitat preservation, pollinator health, and
	ecosystem resilience.
	1.8. Evaluates and implements waste reduction
	strategies, including composting, recycling,
	and the use of organic inputs, to minimize
	environmental pollution and promote circular
	agriculture.
	1.9. Communicates the importance of sustainable

	farming and environmental stewardship to stakeholders, providing clear recommendations for policy, practice, and education.
2 Learn techniques for increasing farm productivity	2.1 Demonstrates a thorough understanding of
while minimizing environmental impact	sustainable farming techniques aimed at
while minimizing environmental impact.	increasing productivity, such as precision agriculture, agroecology, and organic farming
	practices.
	2.2. Applies principles of integrated pest management (IPM) to reduce the use of chemical pesticides, promoting natural pest control and enhancing crop health.
	2.3. Evaluates and implements soil health management strategies, including cover cropping, reduced tillage, and organic amendments, to improve soil fertility and prevent erosion.
	2.4. Utilizes water-efficient irrigation systems, such as drip irrigation and rainwater harvesting, to optimize water use and reduce wastage while ensuring crop growth.
	2.5. Incorporates agroforestry and intercropping practices to enhance biodiversity, improve land use efficiency, and provide additional income streams without compromising environmental health.
	2.6. Implements crop rotation and diversification strategies to maintain soil health, prevent pest cycles, and reduce dependency on synthetic fertilizers and pesticides.
	2.7. Uses data-driven approaches, such as GIS and remote sensing, to monitor crop performance and adjust inputs (e.g., fertilizers, water) to improve yields while minimizing environmental impact
	2.8. Analyzes the carbon footprint of farming practices and explores strategies for carbon sequestration, such as agroforestry, mulching, and the use of biochar.
	2.9. Assesses the trade-offs between productivity and environmental impact, applying cost- benefit analysis to identify the most sustainable practices that optimize both.

AGE0001-26 Advanced Irrigation and Drainage Engineering

The aim of this study unit is to provide students with advanced knowledge and practical expertise in the design and implementation of irrigation and drainage systems for large-scale agriculture. It focuses on equipping students with the skills to apply modern techniques in water management, addressing challenges related to efficient irrigation, drainage, and resource conservation. The unit emphasizes the importance of sustainable practices in managing water resources, ensuring optimal agricultural productivity while minimizing environmental impact.

Learning Outcome:	Assessment Criteria:
1. Apply advanced techniques in irrigation design	1.1. Demonstrates a deep understanding of advanced
and drainage systems.	irrigation design principles, including the
	selection, sizing, and installation of various
	irrigation systems such as drip, sprinkler, and
	surface irrigation.
	1.2. Applies water-use efficiency principles to design
	irrigation systems that minimize water wastage
	while ensuring optimal crop irrigation based on
	soil, crop, and climate conditions.
	1.3. Utilizes modern tools and technologies, such as
	GIS, remote sensing, and soil moisture sensors, to
	assess irrigation needs and optimize system
	performance.
	1.4. Integrates water conservation strategies, such as
	rainwater harvesting, greywater reuse, and the
	use of treated wastewater, into irrigation system
	designs to maximize resource utilization.
	1.5. Designs and implements automated irrigation
	systems that incorporate weather forecasts, soil
	moisture data, and crop water requirements to
	deliver precise and efficient irrigation.
	1.6. Applies drainage design techniques to mitigate
	waterlogging and soll erosion, ensuring proper
	lavouts
	17 Associate the impact of drainage systems on soil
	1.7. Assesses the impact of drainage systems on sol
	nractices in sustainable drainage management
	including the use of biofilters and constructed
	wetlands
	1.8. Evaluates the environmental impact of irrigation
	and drainage systems, recommending practices
	that reduce runoff. promote groundwater
	recharge, and protect local water bodies.
	1.9. Conducts cost-benefit analysis to evaluate the
	economic feasibility of irrigation and drainage
	system designs, balancing installation and

	operational costs with expected benefits in
	productivity and resource conservation.
2. Solve complex problems related to water management in large-scale agriculture.	 2.1. Demonstrates a comprehensive understanding of water management principles, including water availability, distribution, and efficiency, within large-scale agricultural systems. 2.2. Analyzes and evaluates factors such as soil properties, crop water requirements, climate conditions, and water resources to develop tailored water management solutions for large farms.
	2.3. Applies advanced irrigation techniques, such as precision irrigation and automated systems, to optimize water use while minimizing waste and ensuring consistent crop yield.
	2.4. Identifies and addresses challenges related to water scarcity, water quality, and seasonal variability, proposing solutions to mitigate risks and enhance water availability.
	2.5. Integrates sustainable water management practices, including water conservation, rainwater harvesting, and groundwater recharge, into large-scale farming operations to reduce reliance on external water sources.
	2.6. Utilizes modern technologies such as remote sensing, GIS, and soil moisture sensors to monitor and manage water use effectively, making data- driven decisions to improve water efficiency.
	2.7. Designs and implements drainage and runoff management systems to prevent waterlogging, soil erosion, and nutrient loss, ensuring optimal water retention and soil health.
	2.8. Evaluates the environmental impacts of water management practices, ensuring compliance with local regulations and promoting the health of surrounding ecosystems and water bodies.
	2.9. Collaborates with stakeholders, including farmers, engineers, and environmental experts, to develop and implement integrated water management strategies that balance agricultural needs with sustainability goals.

AGE0001-27 Farm Business Management

The aim of this study unit is to provide students with a comprehensive understanding of the financial and operational aspects of farm business management. It focuses on equipping students with the skills to develop business plans, manage farm finances effectively, and analyze profitability, enabling them to make informed decisions and enhance the sustainability and success of agricultural enterprises.

Learning Outcome:	Assessment Criteria:
1. Understand the financial and operational aspects	1.1. Demonstrates a solid understanding of the key
of running a farm business.	financial principles and tools needed to
	manage a farm business, including budgeting,
	cash flow management, and financial
	forecasting.
	1.2. Analyzes the cost structure of farming
	operations, identifying fixed and variable
	costs, and develops strategies to optimize
	resource allocation for maximum profitability.
	1.3. Applies knowledge of farm profitability
	analysis, including break-even analysis, margin
	analysis, and return on investment (ROI), to
	guide financial decision-making.
	1.4. Understands the principles of farm business
	planning, including the development of short-
	and long-term financial goals, risk
	management strategies, and business
	sustainability practices.
	1.5. Evaluates and implements strategies to
	improve operational efficiency, reduce waste,
	and increase labor productivity while
	maintaining nign-quality standards.
	1.6. Demonstrates knowledge of agricultural
	analysis and distribution shannels to
	maximize sales and improve competitive
	advantage
	1.7 Understands the financial impact of
	agricultural policies subsidies grants and
	loans on farm operations, and uses this
	knowledge to seek financial support and
	optimize funding opportunities.
	1.8. Assesses the role of technology and innovation
	in improving farm business operations,
	including the integration of automation. data
	analytics, and precision farming tools to
	reduce costs and increase productivity.
	1.9. Develops and implements risk management

	stratogios such as area insurante
	strategies, such as crop insurance,
	diversification, and hedging, to protect farm
	businesses against market volatility, climate
	risks, and economic fluctuations.
2. Learn to develon business plans, manage finances	2.1 Demonstrates a clear understanding of the key
and analyze profitability	components of a farm business plan including
and analyze prontability.	mission and vision statements market
	analysis operational strategies and financial
	projections.
	2.2. Applies principles of financial management to
	develop and manage budgets, track expenses.
	and monitor cash flow for efficient farm
	operation.
	2.3. Utilizes financial tools and techniques, such as
	profit and loss statements balance sheets and
	cash flow analysis, to evaluate the financial
	health of the farm husiness
	2.4 Develops and implements strategies for
	managing working capital securing financing
	and ontimizing farm investments to ensure
	long-term husiness sustainability
	2.5 Conducts profitability analysis including cost
	of production, break-even analysis, including cost
	on investment (ROI) to assess the financial
	viability of different farming activities
	2.6 Identifies and evaluates financial ricks
	z.o. identifies and evaluates financial risks,
	labor costs and environmental factors and
	develops risk management strategies to
	mitigate these ricks
	111111gale litese 115K5.
	2.7. Onderstands the role of pricing strategies,
	sales forecasting, and market trends in
	enhancing farm profitability and ensuring
	competitive advantage.
	2.8. Demonstrates the ability to assess operational
	enciency, recommending improvements in
	tarm processes, resource allocation, and labor
	management to increase protitability.
	2.9. Communicates financial results and business
	performance effectively to stakeholders,
	providing insights and recommendations for
	future business growth and investment
	opportunities.

AGE0001-28 Design of Agricultural Machinery

The aim of this study unit is to equip students with the knowledge and skills required for the design and development of agricultural machinery and equipment. It focuses on the principles of selecting appropriate materials, components, and technologies, while considering factors such as functionality, efficiency, and sustainability in the design process to meet the needs of modern farming systems.

Learning Outcome:	Assessment Criteria:
1. Learn the process of designing agricultur	al 1.1. Demonstrates a solid understanding of the
machinery and equipment.	fundamental principles of agricultural machinery
	design, including mechanical engineering,
	hydraulics, and materials science.
	1.2. Applies knowledge of farm operations and specific
	crop/livestock needs to design machinery that
	ennances productivity, enciency, and safety in
	irrigation and soil proparation
	1.2 Understands the mechanical components and
	systems involved in agricultural equipment
	including engines transmissions gear systems
	and control systems ensuring ontimal
	functionality and durability.
	1.4. Utilizes computer-aided design (CAD) software
	and simulation tools to create, model, and analyze
	machinery designs, ensuring accuracy and
	feasibility before production.
	1.5. Evaluates and integrates advanced technologies,
	such as automation, GPS, and IoT, into agricultural
	machinery designs to enhance precision,
	efficiency, and ease of operation.
	1.6. Considers environmental impact in the design
	process, incorporating energy-efficient
	technologies and sustainable materials to
	minimize the carbon footprint and reduce
	resource consumption.
	1.7. Understands and applies safety standards and
	regulatory requirements in the design and
	compliance with industry safety protocols
	1.8 Collaborates with farmers and industry experts to
	gather feedback and refine machinery designs
	based on practical needs performance and field
	testing results.
	1.9. Demonstrates the ability to conduct cost-benefit
	analysis and evaluate the long-term economic
	feasibility of agricultural machinery, considering

	initial investment, operational costs, and return on
	investment.
2. Understand how to select materials, components,	2.1. Demonstrates a deep understanding of the
and technologies for designing farm machinery.	properties and characteristics of various materials
	(e.g., metals, polymers, composites) used in the
	design of agricultural machinery, considering
	factors such as strength, durability, weight, and
	cost.
	2.2. Evaluates the performance requirements of
	agricultural machinery to select appropriate
	materials and components that meet operational
	needs while ensuring safety, longevity, and
	reliability.
	2.3. Applies knowledge of material science to choose
	components that resist wear, corrosion, and
	environmental stresses, ensuring machinery
	performs effectively in diverse field conditions.
	2.4. Understands the fole of advanced technologies
	(e.g., automation, sensors, GPS, 101) in faith
	anhance operational officiency procision and
	data collection canabilities
	2.5 Considers the environmental impact of material
	and component choices prioritizing sustainable
	ontions that reduce resource consumption waste
	and emissions during both production and
	operation.
	2.6. Integrates cutting-edge technologies, such as
	electric or hybrid power systems, into machinery
	designs to improve energy efficiency and reduce
	the carbon footprint of farming operations.
	2.7. Demonstrates the ability to assess cost-
	effectiveness, balancing the selection of high-
	quality materials and advanced technologies with
	budget constraints and operational goals.
	2.8. Ensures that selected components and materials
	comply with relevant safety standards, industry
	regulations, and performance benchmarks,
	guaranteeing the safety and functionality of the
	machinery.
	2.9. Collaborates with engineers, farmers, and
	suppliers to identify and source the most
	appropriate materials and technologies based on
	specific tarming needs and machinery design
	requirements.

AGE0001-29 Precision Farming Systems

The aim of this study unit is to provide students with a thorough understanding of precision farming technologies and their integration into modern agricultural systems. It focuses on equipping students with the skills to design, implement, and optimize precision farming solutions, enhancing land use efficiency, crop management, and resource conservation to support sustainable agricultural practices.

Learning Outcome:			Assessment Criteria:
1. Understand the integration	of	precision	1.1. Demonstrates a comprehensive understanding of
technologies in farming systems.			precision agriculture concepts, including the use of
			data-driven technologies to optimize farming
			practices and enhance resource efficiency.
			1.2. Analyzes how precision technologies, such as GPS,
			remote sensing, soil sensors, and drones, can be
			integrated into farming systems to monitor and
			manage variables like soil moisture, crop health,
			and nutrient levels.
			1.3. Understands the role of Geographic Information
			Systems (GIS) and data analytics in processing and
			visualizing spatial data to support decision-making
			in field management, planting, irrigation, and
			harvesting.
			1.4. Evaluates the benefits of using variable rate
			technology (VRT) for inputs like water, fertilizers,
			and pesticides, ensuring precise application that
			reduces waste and minimizes environmental
			impact.
			1.5. Integrates automation and robotics into farming
			systems to enhance operational efficiency, such as
			autonomous tractors, harvesters, and drones,
			reducing labor costs and improving precision.
			1.6. Assesses the economic and environmental impact
			of adopting precision technologies, calculating
			return on investment (ROI) and long-term
			sustainability penetitis for farm operations.
			1.7. identifies potential challenges in adopting
			technical complexity and data management and
			develops strategies to overcome these barriers
			1.8 Understands the importance of interoperability
			hetween various precision technologies ensuring
			seamless data exchange between machines
			software platforms and farm management
			systems
			1.9. Demonstrates the ability to implement precision
			farming strategies that optimize crop yields,

	reduce input costs, and minimize environmental
	footprint while maintaining farm profitability and
	sustainability.
2. Learn to design and implement precision farming	2.1. Demonstrates a clear understanding of precision
solutions for efficient land use.	farming principles, including data collection,
	analysis, and technology integration, to optimize
	land use and improve farming practices.
	2.2. Applies knowledge of soil mapping, topography,
	solutions that match cron needs to specific areas
	within the field ensuring efficient use of
	resources.
	2.3. Utilizes GPS and GIS technologies to map and
	monitor field conditions, ensuring precise
	identification of soil types, moisture levels, and
	nutrient requirements for targeted interventions.
	(VRT) strategies for seed planting irrigation
	fertilization, and pesticide application, optimizing
	input use while minimizing waste and
	environmental impact.
	2.5. Integrates sensor technologies (e.g., soil moisture
	sensors, weather stations) into farm operations to
	provide real-time data, enabling timely decisions
	2.6 Designs and deploys automated systems, such as
	robotic machinery and drones. for precision
	planting, monitoring, and harvesting, reducing
	labor costs and increasing operational efficiency.
	2.7. Evaluates the cost-effectiveness and sustainability
	of precision farming solutions, considering factors
	like initial investment, operational savings, and
	long-term benefits in yield and resource efficiency.
	improve precision farming strategies adjusting
	management practices based on changing
	conditions such as weather patterns and crop
	growth stages.
	2.9. Demonstrates the ability to train and support farm
	operators in using precision farming technologies,
	ensuring proper implementation and maximizing
	the benefits of these systems for improved land
	use.

AGE0001-30 Advanced Soil Mechanics

The aim of this study unit is to deepen students' understanding of soil mechanics principles and their application in agricultural engineering. It focuses on equipping students with advanced techniques for analyzing and improving soil structure, managing soil compaction, and optimizing soil conditions to enhance the efficiency and sustainability of farming systems.

Learning Outcome:	Assessment Criteria:
1. Apply principles of soil mechanics in agricultural	1.1. Demonstrates a thorough understanding of
engineering applications.	soil properties, including texture, structure,
	density, compaction, and porosity, and their
	implications for agricultural engineering
	applications.
	1.2. Applies principles of soil mechanics to design
	and evaluate soil stabilization techniques for
	improving soil structure and preventing
	erosion in agricultural fields.
	1.3. Analyzes the effects of soil compaction on root
	growth, water infiltration, and crop vields.
	recommending appropriate methods for
	compaction mitigation in farming operations.
	1.4. Utilizes soil strength and shear parameters to
	design effective drainage systems, ensuring
	optimal water management, reducing
	waterlogging, and promoting soil health in
	agricultural environments.
	1.5. Integrates soil mechanics principles in the
	design of farm infrastructure, such as roads,
	irrigation channels, and foundations, to ensure
	structural stability and longevity under varying
	soil conditions.
	1.6. Applies knowledge of soil-water interactions
	to optimize irrigation systems, ensuring
	efficient water use and minimizing runoff or
	erosion risks in agricultural land.
	1.7. Demonstrates the ability to assess and address
	the impact of heavy machinery and equipment
	on soil structure, implementing solutions to
	reduce soil compaction and prevent
	degradation.
	1.8. Utilizes laboratory and field testing methods,
	such as soil sampling, Atterberg limits, and
	triaxial testing, to evaluate soil conditions and
	inform engineering decisions in agricultural
	projects.
	1.9. Incorporates sustainable soil management
	practices based on soil mechanics, promoting

	long-term soil fertility, water retention, and erosion control for sustainable agricultural productivity.
2. Learn techniques for improving soil structure and handling soil compaction in farming systems.	2.1. Demonstrates a thorough understanding of soil structure, including the importance of soil aggregation, pore space, and organic matter content for supporting healthy plant growth and water infiltration.
	2.2. Applies techniques such as deep tillage, subsoiling, and aeration to alleviate soil compaction and improve root penetration, water movement, and nutrient uptake in compacted soils.
	2.3. Utilizes cover cropping and crop rotation strategies to enhance soil structure by increasing organic matter, improving microbial activity, and preventing erosion.
	2.4. Implements conservation tillage practices, such as no-till or reduced tillage, to minimize soil disturbance, preserve soil structure, and reduce the risk of compaction.
	2.5. Applies organic and inorganic soil amendments, such as compost, biochar, and gypsum, to improve soil aggregation, enhance nutrient cycling, and reduce compaction in heavy soils
	 2.6. Integrates the use of controlled traffic farming (CTF) systems to limit compaction by restricting heavy machinery to designated paths, preserving soil structure in the rest of the field.
	2.7. Uses modern soil testing methods to monitor compaction levels and soil health, guiding targeted interventions and adjustments in farming practices to optimize soil conditions.
	2.8. Implements proper drainage systems, including the use of tile drains or surface drainage, to prevent waterlogging and the subsequent risk of soil compaction in poorly- drained areas.
	2.9. Collaborates with agronomists and soil scientists to develop site-specific strategies for improving soil structure and managing compaction, ensuring practices are tailored to different soil types and farming systems.

AGE0001-31 Climate-Smart Agriculture

The aim of this study unit is to provide students with a comprehensive understanding of climate-smart agriculture and its role in addressing the challenges posed by climate change. It focuses on equipping students with knowledge of adaptive and mitigation strategies to enhance climate resilience, reduce greenhouse gas emissions, and promote sustainable agricultural practices, ensuring food security and environmental sustainability.

Learning Outcome:	Assessment Criteria:
1. Understand how agriculture can adapt to and	1.1. Demonstrates a comprehensive understanding
mitigate climate change.	of the impact of climate change on agricultural
	systems, including changing weather patterns,
	temperature fluctuations, droughts, floods, and
	shifts in pest and disease dynamics.
	1.2. Applies knowledge of climate-resilient
	agricultural practices, such as drought-resistant
	crops, agroforestry, and water-efficient
	irrigation, to reduce vulnerability to climate change.
	1.3. Identifies and evaluates mitigation strategies in
	agriculture, such as carbon sequestration
	through soil management, agroecological
	practices, and the use of renewable energy
	sources in farming operations.
	1.4. Analyzes the role of sustainable farming
	techniques, including crop diversification,
	conservation tillage, and cover cropping, in
	increasing farm resilience to extreme weather
	events and enhancing soil health.
	1.5. Understands the importance of reducing
	greenhouse gas emissions from agriculture by
	optimizing fertilizer use, improving livestock
	management, and adopting low-carbon
	technologies.
	1.6. Utilizes climate models and data to assess
	potential impacts of climate change on crop
	yields, water availability, and farming systems,
	helping farmers plan and adapt accordingly.
	1.7. Promotes the adoption of precision agriculture
	technologies, including weather forecasting,
	remote sensing, and soil monitoring, to enable
	better resource management and reduce the
	environmental footprint of farming.
	1.8. Recognizes the importance of policy and
	international frameworks, such as carbon
	pricing, subsidies for sustainable practices, and
	climate adaptation funding, in supporting
	climate-resilient agriculture.

	1.9. Engages with farmers, researchers, and
	policymakers to implement adaptation
	strategies and develop long-term, climate-
	smart agricultural plans that enhance
	productivity while mitigating climate risks.
2. Learn strategies for building climate resilience in	2.1. Demonstrates a clear understanding of the
agricultural systems.	concept of climate resilience in agriculture,
	including the ability to adapt to climate
	variability, minimize vulnerability, and recover
	from climate-related shocks.
	2.2. Identifies and applies climate-resilient farming
	practices, such as drought-tolerant crops,
	agroforestry, and intercropping, to improve
	farm productivity and sustainability under
	changing climate conditions.
	2.3. Understands the role of soil health
	management in building resilience, including
	techniques such as organic farming, cover
	cropping, reduced tillage, and mulching to
	enhance soil structure, water retention, and
	tertility.
	2.4. Implements efficient water management
	irrigation and water efficient cron variation to
	ensure reliable water supply in the face of
	climate-induced droughts or water scarcity
	2.5. Develops and applies crop diversification
	strategies to reduce the risk of crop failure due
	to extreme weather events, pests, or diseases,
	enhancing farm income stability and ecosystem
	resilience.
	2.6. Integrates the use of climate-smart
	technologies, such as weather forecasting,
	remote sensing, and precision agriculture, to
	improve decision-making and optimize
	resource use under fluctuating climate
	conditions.
	2.7. Analyzes and applies risk management tools,
	such as crop insurance, financial reserves, and
	diversification, to buffer farms from climate-
	related financial losses and uncertainties.
	2.8. Engages with stakeholders, including farmers,
	researchers, and policymakers, to promote the
	development and adoption of climate
	adaptation strategies, tostering community-
	level resilience through knowledge sharing and

collaboration.
2.9. Continuously monitors and evaluates climate
resilience strategies, adjusting practices based
on new scientific data, emerging climate risks,
and farmer feedback to ensure long-term
viability of agricultural systems.

AGE0001-32 Renewable Energy Systems for Farms

The aim of this study unit is to equip students with the knowledge and skills to design and evaluate renewable energy systems, such as solar, wind, and biomass, tailored for agricultural applications. It focuses on fostering an understanding of the feasibility, efficiency, and sustainability of integrating renewable energy solutions into farming operations, promoting energy independence and environmental stewardship in agricultural practices.

Learning Outcome:	Assessment Criteria:
1. Design renewable energy systems (solar, wind,	1.1. Demonstrates a comprehensive understanding
biomass) for use in agricultural operations.	of renewable energy technologies, including
	solar, wind, and biomass, and their potential
	applications in agricultural operations for
	energy generation and efficiency.
	1.2. Applies knowledge of energy needs in
	agricultural settings to design customized
	renewable energy systems that address
	specific farm requirements, such as irrigation,
	heating, cooling, and mechanization.
	1.3. Designs and sizes solar power systems,
	including photovoltaic panels, inverters, and
	battery storage, to meet the energy demands
	of agricultural operations, ensuring optimal
	1.4 Evaluates the feasibility of wind energy
	systems for farms considering local wind
	natterns turbine canacity and energy storage
	solutions to generate electricity for farm
	operations.
	1.5. Applies principles of biomass energy
	production, including the selection and
	processing of organic materials (e.g., crop
	residues, animal waste), to design systems for
	bioenergy generation such as biogas, biofuels,
	or biomass boilers.
	1.6. Integrates energy storage solutions, such as
	batteries or thermal storage, into renewable
	energy systems to ensure a continuous,
	reliable energy supply, particularly during non-
	sunny or non-windy periods.
	1.7. Analyzes the economic and environmental
	benefits of renewable energy systems,
	conducting cost-benefit analysis to assess
	initial investment, operational savings, and
	Iong-term sustainability for farm businesses.
	1.0. Designs hypric renewable energy systems,
	nrovide a balanced stable energy supply while

	 minimizing dependency on fossil fuels and grid electricity. 1.9. Considers the environmental and regulatory implications of renewable energy installations, ensuring compliance with local zoning laws, environmental impact assessments, and industry standards for renewable energy systems.
2. Assess the feasibility and sustainability of renewable energy on farms.	2.1. Demonstrates the ability to conduct a comprehensive feasibility assessment of renewable energy systems (solar, wind, biomass) for agricultural applications, considering energy needs, geographic location,
	and environmental factors. 2.2. Analyzes farm energy consumption patterns to determine the appropriate size, type, and configuration of renewable energy systems (e.g., solar arrays, wind turbines, biomass digesters) that would provide optimal energy production and meet operational demands.
	2.3. Assesses the financial feasibility of renewable energy projects by conducting cost-benefit analyses, evaluating initial capital costs, ongoing operational expenses, and potential savings from reduced energy bills or increased efficiency.
	2.4. Evaluates the technical feasibility of renewable energy integration, including grid connection, energy storage solutions, and the compatibility of renewable systems with existing farm infrastructure and equipment.
	2.5. Conducts an environmental impact assessment to evaluate how renewable energy systems affect local ecosystems, water resources, and soil health, ensuring that installations align with sustainable farming
	practices. 2.6. Considers long-term sustainability by assessing the durability and maintenance requirements of renewable energy systems, ensuring their reliability, efficiency, and cost-effectiveness over time.
	2.7. Analyzes the potential for energy independence and resilience, evaluating how renewable energy systems can mitigate risks

related to energy price fluctuations, supply disruptions, or external dependencies.
2.8. Assesses regulatory and policy implications, ensuring that renewable energy projects comply with local, regional, and national regulations, including zoning, permitting, and environmental guidelines.
2.9. Engages with stakeholders (e.g., farm operators, energy consultants, and local authorities) to gather input and align renewable energy projects with the farm's economic, environmental, and operational goals.

AGE0001-33 Post-Harvest Technology

The aim of this study unit is to provide students with a comprehensive understanding of the principles and practices involved in post-harvest handling, storage, and processing of agricultural produce. It focuses on equipping students with the knowledge and techniques to minimize post-harvest losses, maintain product quality, and enhance the value of harvested crops, contributing to sustainable agricultural systems and food security.

Learning Outcome:	Assessment Criteria:
1. Understand the principles of post-harvest handling, storage, and processing.	1.1. Demonstrates a clear understanding of the principles of post-harvest handling, focusing on techniques to minimize losses, preserve quality, and maintain the nutritional value of harvested crops.
	1.2. Understands the physiological changes that occur in crops post-harvest, including respiration, ripening, and senescence, and applies this knowledge to optimize storage conditions and extend shelf life.
	1.3. Applies best practices in harvesting, handling, and transporting crops to prevent mechanical damage, contamination, and spoilage, ensuring the preservation of quality from field to storage.
	1.4. Demonstrates knowledge of various storage methods, including temperature control (e.g., refrigeration, cooling), humidity control, and ventilation, tailored to different types of crops (e.g., grains, fruits, vegetables).
	1.5. Understands the role of packaging materials and techniques in protecting crops during storage and transportation, maintaining their quality, and preventing physical damage or pest infestation.
	1.6. Evaluates the principles of processing agricultural products to improve shelf life, add value, and ensure food safety while preserving nutrients and flavor.
	 Demonstrates knowledge of food safety standards and regulations, including HACCP (Hazard Analysis and Critical Control Points), to ensure safe and hygienic handling, storage,
	and processing practices. 1.8. Identifies and implements methods for reducing post-harvest losses, including integrated pest management (IPM) strategies, proper sanitation, and the use of natural
	preservatives.

	1.9. Understands the role of technological
	innovations, such as automated sorting, drying
	systems, and climate-controlled storage, in
	improving the efficiency and sustainability of
	post-harvest operations.
2. Learn techniques to minimize losses and preserve	2.1. Demonstrates a thorough understanding of
the quality of harvested crops.	the factors that contribute to post-harvest
	losses, including mechanical damage,
	dehydration, microbial contamination, and
	improper handling.
	2.2. Applies knowledge of proper harvesting
	techniques to reduce crop damage, ensuring
	minimal physical injury and contamination
	during harvesting processes.
	2.3. Implements appropriate pre-storage
	treatments, such as cleaning, sorting, and
	grading, to enhance crop quality and minimize
	the risk of spoilage during storage and
	transportation.
	2.4. Demonstrates the ability to select and
	maintain optimal storage conditions for
	different crop types, extending shelf life and
	maintaining nutritional value.
	2.5. Understands and applies appropriate
	packaging techniques and materials to protect
	crops from physical damage, contamination,
	and environmental stress during storage and
	transportation.
	2.6. Utilizes preservation methods, such as
	controlled atmosphere storage, refrigeration,
	and drying, to minimize spoilage, maintain
	texture and flavor, and reduce waste.
	2.7. Implements integrated pest management
	(IPM) strategies and sanitation practices to
	prevent pest infestations and microbial growth
	during post-harvest handling.
	2.8. Analyzes the impact of handling practices,
	such as sorting and transportation, on crop
	quality, ensuring minimal exposure to factors
	that could lead to bruising, rot, or degradation.
	2.9. Evaluates and applies technological
	innovations, such as automated sorting,
	advanced packaging systems, and climate-
	controlled storage, to enhance post-harvest
	quality preservation and reduce losses.

AGE0001-34 Automation in Agriculture

The aim of this study unit is to provide students with an in-depth understanding of the role of automation and robotics in modern agriculture. It focuses on exploring how automated systems enhance efficiency, precision, and sustainability in farming operations such as planting, harvesting, and processing. Through this unit, students will gain insights into cutting-edge technologies and their applications in addressing the challenges of contemporary agricultural practices.

 Learn about the role of automation and robotics in farming. 1.1. Demonstrates a solid understanding of the principles of automation and robotics in agriculture, including the various types of technologies and their applications across different farming operations. 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 	Learning Outcome:	Assessment Criteria:
 farming. principles of automation and robotics in agriculture, including the various types of technologies and their applications across different farming operations. 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 	1. Learn about the role of automation and robotics in	1.1. Demonstrates a solid understanding of the
 agriculture, including the various types of technologies and their applications across different farming operations. 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 	farming.	principles of automation and robotics in
 technologies and their applications across different farming operations. 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 	-	agriculture, including the various types of
 different farming operations. 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		technologies and their applications across
 1.2. Explains the role of automated machinery in reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		different farming operations.
 reducing labor costs, increasing efficiency, and improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		1.2. Explains the role of automated machinery in
 improving the precision of agricultural tasks such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		reducing labor costs, increasing efficiency, and
 such as planting, harvesting, irrigation, and crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		improving the precision of agricultural tasks
 crop monitoring. 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		such as planting, harvesting, irrigation, and
 1.3. Analyzes the integration of robotics in farming, including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		crop monitoring.
 including autonomous tractors, drones, and robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		1.3. Analyzes the integration of robotics in farming,
 robotic harvesters, and evaluates their impact on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		including autonomous tractors, drones, and
 on farm productivity, cost-effectiveness, and sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		robotic harvesters, and evaluates their impact
 sustainability. 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		on farm productivity, cost-effectiveness, and
 1.4. Understands the use of precision farming tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		sustainability.
 tools, such as GPS-guided equipment and sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		1.4. Understands the use of precision farming
 sensor-based systems, to enhance crop management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		tools, such as GPS-guided equipment and
 management, optimize inputs, and minimize waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills 		sensor-based systems, to enhance crop
waste. 1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills		management, optimize inputs, and minimize
1.5. Demonstrates the ability to evaluate the potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills		waste.
potential benefits and challenges of adopting automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills		1.5. Demonstrates the ability to evaluate the
automation and robotics, considering factors such as capital investment, return on investment (ROI), and the technical skills		potential benefits and challenges of adopting
such as capital investment, return on investment (ROI), and the technical skills		automation and robotics, considering factors
investment (ROI), and the technical skills		such as capital investment, return on
		investment (ROI), and the technical skills
required for operation.		required for operation.
1.6. Assesses the role of artificial intelligence (AI)		1.6. Assesses the role of artificial intelligence (AI)
and machine learning in improving farm		and machine learning in improving farm
automation systems, such as through		automation systems, such as through
predictive analytics, crop health monitoring,		predictive analytics, crop health monitoring,
and yield forecasting.		and yield forecasting.
1.7. Explores the impact of automation on labor		1.7. Explores the impact of automation on labor
dynamics in agriculture, including workforce		dynamics in agriculture, including workforce
displacement and the potential for upskilling		displacement and the potential for upskilling
and training opportunities for farm workers.		and training opportunities for farm workers.
1.8. Examines the environmental implications of		1.8. Examines the environmental implications of
robotic and automated systems, including		robotic and automated systems, including

	the potential for precision water management.
	1.9. Investigates the scalability and adaptability of
	automation and robotics in different
	agricultural settings including small-scale and
	large scale forms, and identifies strategies for
	large-scale farms, and identifies strategies for
	overcoming barriers to adoption.
2. Understand how automation can improve	2.1. Demonstrates a comprehensive understanding
efficiency in planting, harvesting, and processing.	of how automation technologies, such as
	autonomous tractors, robotic planters, and
	harvesters contribute to improving
	operational officiency in planting baryosting
	operational efficiency in planting, halvesting,
	and processing.
	2.2. Analyzes the role of automated planting
	systems in optimizing seed placement, depth,
	and spacing, ensuring uniform crop
	emergence, reduced seed waste, and
	improved overall yield.
	2.3. Understands how automated irrigation
	systems, integrated with weather forecasting
	and soil moisture sensors, can optimize water
	usage during planting enhancing crop
	astablishment and minimizing water waste
	2.4. Eveloine the educators of rebetic horizotor
	2.4. Explains the advantages of robotic narvesters
	in reducing labor costs, increasing harvest
	precision, and minimizing crop damage during
	the harvesting process, leading to higher-
	quality produce and reduced post-harvest
	losses.
	2.5. Evaluates the use of automated sorting,
	grading, and packaging systems in post-harvest
	processing, enhancing efficiency, consistency,
	and quality control while reducing human
	error and operational costs.
	2.6 Assesses the integration of sensor-based
	technologies and Al in automated systems for
	real-time monitoring and decision mobiles
	such as determining and decision-IndKillg,
	such as determining optimal narvest timing,
	Son conditions, and crop nealth.
	2.7. Understands now automation can streamline
	supply chain processes, including harvesting,
	processing, and transportation, improving
	logistical efficiency and reducing time-to-
	market for perishable products.
	2.8. Analyzes the potential for data-driven insights
	from automated systems to inform decision-

making on planting schedules, crop
 making on planting schedules, crop management, and processing operations, ultimately increasing resource efficiency and maximizing profitability. 2.9. Evaluates the environmental benefits of automation in reducing input waste (e.g., water, fertilizers, pesticides) and improving energy officiency in planting baryesting and
processing activities.
Ĩ

AGE0001-35 Research Methods in Agriculture Engineering

The aim of this study unit is to equip students with the essential skills and methodologies required to conduct rigorous research in agricultural engineering. It focuses on fostering a comprehensive understanding of experimental design, data collection, and analysis techniques while enhancing the ability to effectively communicate research findings. This unit prepares students to address complex agricultural challenges through evidence-based approaches and innovative problem-solving.

Learning Outcome:			Assessment Criteria:
1. Develop skills in conducting	research	in	1.1. Demonstrates a solid understanding of research
agricultural engineering.			methodologies, including experimental design,
			data collection, analysis, and interpretation, as
			applied to agricultural engineering problems and
			innovations.
			1.2. Develops proficiency in using relevant research
			tools and software (e.g., CAD, MATLAB, statistical
			analysis programs) for designing and conducting
			experiments, simulations, and modeling in
			agricultural systems.
			1.3. Identifies critical research questions in agricultural
			engineering, such as improving machinery design,
			enhancing crop production systems, optimizing
			resource management, and developing
			sustainable agricultural practices.
			1.4. Conducts literature reviews to evaluate existing
			research, understand current trends, identify gaps
			in knowledge, and establish a foundation for
			original research projects in agricultural
			engineering.
			1.5. Designs, implements, and evaluates research
			projects that address specific agricultural
			engineering challenges, ensuring research
			outcomes are relevant, practical, and aligned with
			industry needs.
			1.6. Analyzes data using appropriate statistical
			methods, ensuring the accuracy, reliability, and
			validity of results in the context of agricultural
			engineering applications.
			1.7. Develops and tests hypotheses related to
			agricultural engineering innovations, using
			controlled experiments and real-world data to
			draw actionable conclusions.
			1.8. Communicates research findings effectively
			through written reports, research papers, and
			presentations, ensuring that results are accessible
			to poth academic audiences and industry
			stakenolders.
			1.9. Collaborates with agricultural engineers, farmers,

	and other professionals to identify practical
	solutions to real-world problems, ensuring
	research has practical, on-the-ground applications.
2. Learn about experimental design, data analysis,	2.1. Demonstrates a solid understanding of
and presenting research findings.	experimental design principles, including
	hypothesis formulation, variable identification,
	and control group establishment to ensure valid
	and reliable research outcomes.
	2.2. Applies appropriate sampling methods to ensure
	representative data collection, minimizing bias and
	experimental results
	2.3. Develops skills in selecting and utilizing various
	experimental techniques, such as randomized
	controlled trials, field experiments, and laboratory
	testing, to address specific research questions in
	agricultural engineering.
	2.4. Implements proper data collection methods,
	ensuring consistency, accuracy, and repeatability
	across experiments, with attention to factors such
	as measurement precision and instrumentation
	calibration.
	2.5. Utilizes advanced data analysis tools and software
	(e.g., statistical packages such as SPSS, R, or
	data applying relevant statistical tests to validate
	hypotheses
	2.6 Interprets research results critically drawing
	evidence-based conclusions and identifying
	trends, patterns, and correlations that provide
	insights into agricultural engineering applications.
	2.7. Communicates research findings effectively
	through well-structured written reports, research
	papers, and visual aids (e.g., charts, graphs),
	ensuring clarity and accessibility for both academic
	and industry audiences.
	2.8. Develops oral presentation skills, presenting
	research findings confidently to stakeholders,
	and policymakers, using appropriate language and
	and policymakers, using appropriate language and visual tools
	2.9 Applies the principles of scientific communication
	including clarity, transparency, and adherence to
	ethical standards, to ensure research is
	communicated responsibly and effectively.

AGE0001-36 Final Project in Agricultural Engineering

The aim of this study unit is to empower students to integrate and apply the theoretical and practical knowledge gained throughout their academic journey in agricultural engineering. It focuses on enabling students to design, develop, and implement a comprehensive project that addresses real-world challenges in the field. Through this unit, students will enhance their problem-solving, innovation, and research skills, while demonstrating technical proficiency and critical thinking.

Learning Outcome:	Assessment Criteria:
1. Apply knowledge from previous years to design	1.1. Integrates theoretical knowledge from
and implement an agricultural engineering	previous coursework in agricultural
project.	engineering, including principles of crop
	management, machinery design, soil
	mechanics, irrigation systems, and renewable
	energy, to develop a well-structured
	agricultural engineering project.
	1.2. Demonstrates the ability to conduct a
	comprehensive needs assessment, identifying
	key challenges and opportunities within the
	agricultural sector, and translates these into
	practical project objectives.
	1.3. Applies sound engineering principles to design
	innovative solutions, utilizing appropriate
	technologies, tools, and methodologies to
	address identified agricultural problems or
	enhance productivity.
	1.4. Develops a clear, actionable project plan that
	includes detailed timelines, resource
	allocation, and milestone tracking, ensuring
	efficient execution and adherence to project
	scope and budget constraints.
	1.5. Conducts a feasibility analysis, assessing
	technical, economic, environmental, and
	regulatory factors to ensure the project's
	sustainability, scalability, and alignment with
	industry standards.
	1.6. Demonstrates proficiency in utilizing relevant
	design and simulation software (e.g., CAD,
	MATLAB, GIS) to create and optimize models
	for the proposed project, ensuring accuracy
	and technical integrity.
	1.7. Applies principles of project management,
	including risk assessment, problem-solving,
	and team coordination, to ensure the
	successful implementation of the project from
	conceptualization to execution.
	1.8. Evaluates project outcomes through data

	 collection and performance analysis, applying critical thinking to assess efficiency, effectiveness, and overall impact, and making necessary adjustments for continuous improvement. 1.9. Effectively communicates project progress and results to stakeholders through professional reports, technical documentation, and presentations, ensuring clarity and transparency in conveying complex technical details.
2. Demonstrate problem-solving, innovation, and research skills in solving a real-world agricultural engineering challenge.	2.1. Demonstrates the ability to identify and clearly define a real-world agricultural engineering problem, considering the technical, economic, environmental, and social factors that impact the issue.
	2.2. Applies critical thinking and analytical skills to break down complex agricultural engineering problems into manageable components, prioritizing key factors and formulating effective solutions.
	2.3. Utilizes innovative approaches and cutting- edge technologies (e.g., precision farming, renewable energy, automated systems) to develop novel solutions that address the identified agricultural challenge in an efficient and sustainable manner.
	2.4. Conducts thorough research to gather relevant data, review existing literature, and evaluate current best practices, ensuring the proposed solution is informed by up-to-date knowledge and industry standards.
	2.5. Designs and tests prototypes or models to validate potential solutions, using data-driven decision-making to refine and optimize engineering designs and approaches.
	2.6. Demonstrates strong problem-solving skills by identifying and addressing obstacles that arise during the project, adjusting strategies as needed to ensure project success.
	2.7. Evaluates the feasibility and impact of proposed solutions, considering technical, financial, environmental, and operational constraints, ensuring the solution's practicality and sustainability.

2.8. Engages in continuous learning throughout the
problem-solving process, seeking expert
opinions, collaborating with industry professionals, and incorporating new insights
into the solution development.
2.9. Communicates the problem-solving process, research findings, and proposed solutions clearly and effectively to stakeholders through technical reports, presentations, and recommendations, ensuring the solution is understood and actionable.

ICTQual AB

Yew Tree Avenue, Dagenham,

London East,United Kingdom RM10 7FN +44 744 139 8083 Support@ictqualab.co.uk | www.ictqualab.co.uk

Visit Official Web page

