

Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

Website www.ictqualab.co.uk

Email: Support@ictqualab.co.uk

ICTQual AB

Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

Contents

About ICTQual AB	2
Course Overview	2
Certification Framework	3
Entry Requirements	3
Qualification Structure	3
Centre Requirements	4
Support for Candidates	6
Assessment	6
Unit Descriptors	8

Qualification Specifications about

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

About ICTQual AB

ICTQual AB UK Ltd. is a distinguished awarding body based in the United Kingdom, dedicated to fostering excellence in education, training, and skills development. Committed to global standards, ICTQual AB provides internationally recognized qualifications that empower individuals and organizations to thrive in an increasingly competitive world. Their offerings span diverse industries, including technical fields, health and safety, management, and more, ensuring relevance and adaptability to modern workforce needs.

The organization prides itself on delivering high-quality educational solutions through a network of Approved Training Centres worldwide. Their robust curriculum and innovative teaching methodologies are designed to equip learners with practical knowledge and skills for personal and professional growth. With a mission to inspire lifelong learning and drive positive change, ICTQual AB continuously evolves its programs to stay ahead of industry trends and technological advancements.

ICTQual AB's vision is to set benchmarks for educational excellence while promoting inclusivity and integrity. Their unwavering focus on quality and accessibility makes them a trusted partner in shaping future-ready professionals and advancing societal progress globally.

Course Overview

The ICTQual Level 5 Diploma in Biotechnology Engineering (240 Credits – Two Years) is a comprehensive qualification designed to develop advanced knowledge, skills, and competencies in biotechnology engineering. This program is tailored for individuals aiming to excel in the biotechnology industry, focusing on its diverse applications across sectors such as healthcare, pharmaceuticals, agriculture, environmental management, and industrial manufacturing.

The curriculum is meticulously structured to cover a wide range of advanced topics, including molecular biology, bioprocess engineering, bioinformatics, genetic engineering, environmental biotechnology, and biomanufacturing techniques. Learners will also gain expertise in laboratory instrumentation, quality assurance, regulatory compliance, and ethical considerations critical to biotechnology research and production. Emphasis is placed on fostering innovative thinking, analytical skills, and problem-solving abilities to address complex challenges in the field.

Designed for individuals with prior qualifications or experience in biotechnology or related fields, this program prepares graduates for senior roles in research, development, production, and quality management within the

biotechnology sector. It also serves as a pathway to higher education, enabling progression to postgraduate studies or specialized certifications.

Certification Framework

Qualification title	ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years
Course ID	BE0002
Qualification Credits	240 Credits
Course Duration	Two Years
Grading Type	Pass / Fail
Competency Evaluation	Coursework / Assignments / Verifiable Experience
Assessment	The assessment and verification process for ICTQual qualifications involves two key
	stages:

Internal Assessment and Verification:

- ✓ Conducted by the staff at the Approved Training Centre (ATC). Ensures learners meet the required standards through continuous assessments.
- ✓ Internal quality assurance (IQA) is carried out by the centre's IQA staff to validate the assessment processes.

External Quality Assurance:

- ✓ Managed by ICTQual AB verifiers, who periodically review the centre's assessment and IQA processes.
- ✓ Verifies that assessments are conducted to the required standards and ensures consistency across centres

Entry Requirements

To enroll in the ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years, candidates must meet the following entry requirements:

- ✓ Applicants must be at least 16 years old.
- ✓ A minimum of a Level 4 qualification (or equivalent) in a related field such as science, engineering, or a technical discipline. This may include A-levels, BTEC National Diploma, or equivalent qualifications.
- ✓ A strong background in subjects like biology, chemistry, physics, or mathematics is highly recommended to ensure a solid foundation for the course content.
- ✓ While prior experience in biotechnology engineering is not mandatory, applicants should have a general understanding of scientific principles and problem-solving techniques.
- ✓ For non-native English speakers, proof of English language proficiency is required.

Qualification Structure

This qualification comprises 24 mandatory units, totaling 240 credits. Candidates must successfully complete all mandatory units to achieve the qualification.

www.ictqualab.co.uk

Mandatory Units		
Unit Ref#	Unit Title	Credits
	Year 1:	
BE0002-1	Introduction to Biotechnology Engineering	10
BE0002-2	Molecular Biology and Genetics	10
BE0002-3	Principles of Biochemistry	10
BE0002-4	Cell Biology and Biotechnology Applications	10
BE0002-5	Bioinformatics and Data Analysis	10
BE0002-6	Bioprocessing Techniques and Technologies	10
BE0002-7	Genetic Engineering and Recombinant DNA Technology	10
BE0002-8	Biotechnology Equipment and Instrumentation	10
BE0002-9	Laboratory Safety and Quality Control	10
BE0002-10	Microbiology and Biotechnology	10
BE0002-11	Plant and Animal Biotechnology	10
BE0002-12	Industrial Biotechnology and Bio manufacturing	10
	Year 2:	
BE0002-13	Biostatistics and Experimental Design	10
BE0002-14	Environmental Biotechnology	10
BE0002-15	Bioethics and Regulatory Considerations	10
BE0002-16	Biochemical Engineering Principles	10
BE0002-17	Protein Engineering and Expression Systems	10
BE0002-18	Fermentation Technology in Biotechnology	10
BE0002-19	Bioprocess Control and Optimization	10
BE0002-20	Biotechnology in Drug Development	10
BE0002-21	Biotechnology in Agriculture and Food Production	10
BE0002-22	Biotechnology in Waste Management	10
BE0002-23	Research and Development in Biotechnology	10
BE0002-24	Professional Practice and Career Development in Biotechnology	10

Centre Requirements

Even if a centre is already registered with ICTQual AB, it must meet specific requirements to deliver the ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years. These standards ensure the quality and consistency of training, assessment, and learner support.

1. Approval to Deliver the Qualification

- ✓ Centres must obtain formal approval from ICTQual AB to deliver this specific qualification, even if they are already registered.
- ✓ The approval process includes a review of resources, staff qualifications, and policies relevant to the program.

2. Qualified Staff

- ✓ Tutors: Must have relevant qualifications in Biotechnology Engineering at Level 6 or higher, alongside teaching/training experience.
- ✓ Assessors: Must hold a recognized assessor qualification and demonstrate expertise in Biotechnology Engineering.
- ✓ Internal Quality Assurers (IQAs): Must be appropriately qualified and experienced to monitor the quality of assessments..

3. Learning Facilities

Centres must have access to appropriate learning facilities, which include:

- ✓ **Classrooms:** Modern classrooms equipped with multimedia tools to deliver engaging theoretical instruction on genetic engineering, molecular biology, and bioprocess technology.
- ✓ Practical Areas: State-of-the-art laboratories featuring advanced equipment for DNA sequencing, PCR, cell culture, fermentation, and bioinformatics, providing hands-on experience in cutting-edge biotech techniques.
- ✓ Technology Access: High-performance computers with specialized software (e.g., BLAST, PyMOL, and molecular modeling tools) and internet connectivity to support research, simulations, and bioinformatics projects.

4. Health and Safety Compliance

- ✓ Centres must ensure that practical training environments comply with relevant health and safety regulations.
- ✓ Risk assessments must be conducted regularly to maintain a safe learning environment.

5. Resource Requirements

- ✓ Learning Materials: Approved course manuals, textbooks, and study guides aligned with the curriculum.
- ✓ Assessment Tools: Templates, guidelines, and resources for conducting and recording assessments.
- ✓ E-Learning Systems: If offering online or hybrid learning, centres must provide a robust Learning Management System (LMS) to facilitate remote delivery.

6. Assessment and Quality Assurance

- ✓ Centres must adhere to ICTQual's assessment standards, ensuring that all assessments are fair, valid, and reliable.
- ✓ Internal quality assurance (IQA) processes must be in place to monitor assessments and provide feedback to assessors.
- ✓ External verification visits from ICTQual will ensure compliance with awarding body standards.

7. Learner Support

- ✓ Centres must provide learners with access to guidance and support throughout the program, including:
- ✓ Academic support for coursework.
- ✓ Career guidance for future progression.

www.ictqualab.co.uk

✓ Additional support for learners with specific needs (e.g., disabilities or language barriers).

8. Policies and Procedures

Centres must maintain and implement the following policies, as required by ICTQual:

- ✓ Equal Opportunities Policy.
- ✓ Health and Safety Policy.
- ✓ Safeguarding Policies and Procedures.
- ✓ Complaints and Appeals Procedure.
- ✓ Data Protection and Confidentiality Policy.

9. Regular Reporting to ICTQual

- ✓ Centres must provide regular updates to ICTQual AB on learner enrollment, progress, and completion rates.
- Centres are required to maintain records of assessments and learner achievements for external auditing purposes.

Support for Candidates

Centres should ensure that materials developed to support candidates:

- ✓ Facilitate tracking of achievements as candidates progress through the learning outcomes and assessment criteria.
- ✓ Include information on how and where ICTQual's policies and procedures can be accessed.
- ✓ Provide mechanisms for Internal and External Quality Assurance staff to verify and authenticate evidence effectively.

This approach ensures transparency, supports candidates' learning journeys, and upholds quality assurance standards.

Assessment

This qualification is competence-based, requiring candidates to demonstrate proficiency as defined in the qualification units. The assessment evaluates the candidate's skills, knowledge, and understanding against the set standards. Key details include:

1. Assessment Process:

- \checkmark Must be conducted by an experienced and qualified assessor.
- ✓ Candidates compile a portfolio of evidence that satisfies all learning outcomes and assessment criteria for each unit.
- 2. Types of Evidence:
 - ✓ Observation reports by the assessor.

www.ictqualab.co.uk

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

- ✓ Assignments, projects, or reports.
- ✓ Professional discussions.
- ✓ Witness testimonies.
- ✓ Candidate-produced work.
- ✓ Worksheets.
- ✓ Records of oral and written questioning.
- ✓ Recognition of Prior Learning (RPL).

3. Learning Outcomes and Assessment Criteria:

- ✓ Learning Outcomes: Define what candidates should know, understand, or accomplish upon completing the unit.
- ✓ Assessment Criteria: Detail the standards candidates must meet to demonstrate that the learning outcomes have been achieved.

This framework ensures rigorous and consistent evaluation of candidates' competence in line with the qualification's objectives.

Unit Descriptors

BE0002-1 – Introduction to Biotechnology Engineering

The aim of this study unit is to equip learners with a comprehensive understanding of the foundational principles and interdisciplinary applications of biotechnology engineering. It focuses on fostering analytical and problemsolving skills to address global challenges, including advancements in healthcare, sustainable agriculture, and environmental conservation. Through this unit, students will develop the expertise to apply biotechnological innovations to improve industry practices and contribute to sustainable development on an international scale.

Learning Outcome:	Assessment Criteria:
1. Understand the fundamental concepts and	1.1. Explain the core principles of biotechnology
applications of biotechnology engineering in	engineering, including genetic engineering,
various industries.	bioprocessing, and bioinformatics.
	1.2. Describe the role of biotechnology in
	advancing healthcare, agriculture, and
	environmental sustainability.
	1.3. Analyze the structure and function of
	biomolecules and their relevance to
	biotechnological applications.
	1.4. Evaluate the ethical considerations and
	regulatory frameworks governing
	biotechnology practices in various industries.
	1.5. Demonstrate an understanding of
	biotechnological techniques used in
	pharmaceuticals, food production, and
	biofuels.
	1.6. Assess the impact of biotechnology
	innovations on societal and economic
	development.
	1.7. Differentiate between traditional engineering
	approaches in problem solving
	1.8 Identify emerging trends and technologies in
	hiotechnology engineering and their potential
	applications.
	1.9. Discuss case studies highlighting the
	successful integration of biotechnology
	engineering in industrial processes.
2 Analyza the role of histochnology in addressing	2.1 Evamina casa studios chawcasing
2. Analyze the role of biotechnology in addressing	2.1. Examine case studies showcasing
gioual chanenges such as healthcare, agriculture,	healthcare challenges including disease
ana environmentai sustamability.	nrevention diagnostics and treatment
	2.2. Evaluate the impact of genetically modified

organisms (GMOs) in improving agricultural
2.3. Assess the effectiveness of biotechnology in
developing sustainable practices for waste management and pollution reduction.
2.4. Compare traditional and biotechnological approaches to addressing environmental challenges, such as climate change and biodiversity loss.
2.5. Investigate the role of biotechnology in creating alternative energy sources, such as biofuels and biogas.
2.6. Discuss the ethical and socio-economic implications of biotechnological interventions in global issues.
2.7. Analyze the contributions of biotechnology in combating malnutrition and developing fortified food products.
2.8. Review regulatory frameworks and policies that guide the application of biotechnology in solving global challenges.
2.9. Propose innovative biotechnology-based strategies to address current and future global challenges effectively.

BE0002-2: Molecular Biology and Genetics

This study unit aims to provide learners with an in-depth understanding of biotechnology engineering and its transformative role in solving global challenges. By exploring theoretical concepts, real-world case studies, and practical applications, students will analyze biotechnological solutions in healthcare, agriculture, environmental sustainability, and energy production. The unit emphasizes critical evaluation of the ethical, socio-economic, and regulatory aspects of biotechnology, fostering innovation and strategic thinking to address current and future global issues effectively.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Gain a detailed understanding of molecular biology principles and genetic mechanisms.	 Assessment Criteria: 1.1. Explain the structure and function of DNA, RNA, and proteins and their roles in genetic expression. 1.2. Analyze the processes of DNA replication, transcription, and translation in prokaryotic and eukaryotic systems. 1.3. Evaluate the mechanisms of gene regulation, including operons, enhancers, and transcription factors. 1.4. Describe the principles of genetic mutations, their types, and their implications for genetic diversity and disease. 1.5. Investigate techniques used in molecular biology, such as PCR, gel electrophoresis, and sequencing technologies. 1.6. Discuss the applications of recombinant DNA technology in genetic engineering and therapeutic developments. 1.7. Assess the role of epigenetics in gene expression and inheritance patterns.
	 1.8. Examine case studies of molecular biology research that have led to significant advancements in science and medicine. 1.9. Critically analyze the ethical and safety considerations of molecular biology applications in various fields.
2. Analyze genetic material manipulation	2.1 Explain the principles and processes involved
techniques, including gene cloning, PCR, and sequencing.	in gene cloning, including vector selection, ligation, and transformation.
	2.2. Describe the steps of Polymerase Chain Reaction (PCR) and its applications in molecular biology and diagnostics.
	2.3. Evaluate various DNA sequencing methods, including Sanger sequencing and next-

generation sequencing (NGS).
2.4. Compare the advantages, limitations, and applications of different genetic material manipulation techniques.
2.5. Assess the use of CRISPR-Cas9 technology in gene editing and its potential in therapeutic and agricultural innovations.
2.6. Investigate the ethical considerations and regulatory guidelines associated with genetic manipulation techniques.
2.7. Demonstrate an understanding of troubleshooting and optimization in PCR and cloning experiments.
2.8. Analyze case studies where genetic material manipulation techniques have contributed to advancements in biotechnology.
2.9. Propose innovative applications of genetic manipulation to solve complex biological and industrial challenges.

BE0002-3 Principles of Biochemistry

The aim of this study unit is to provide students with a comprehensive understanding of fundamental biochemical principles, including key pathways and molecular interactions that underpin biotechnological processes. The unit focuses on cultivating analytical and practical skills to apply biochemical knowledge effectively in addressing challenges and advancing innovations within biotechnology-related fields.

Learning Outcome:	Assessment Criteria:
1. Understand the key biochemical pathways and	1.1. Explain the fundamental biochemical
molecular interactions essential to	pathways, including glycolysis, the Krebs
biotechnology.	cycle, and oxidative phosphorylation, and
	their roles in energy production.
	1.2. Analyze the structure and function of
	enzymes, their catalytic mechanisms, and
	their applications in biotechnology.
	1.3. Evaluate the processes of photosynthesis and
	fermentation and their relevance to industrial
	biotechnology.
	1.4. Investigate the role of molecular interactions,
	such as protein-protein and protein-ligand
	interactions, in cellular functions and
	biotechnological innovations.
	1.5. Describe the principles of metabolic
	engineering and its use in optimizing
	applications
	1.6 Assess the impact of biochemical nathways on
	the production of biopharmaceuticals
	hiofuels and other hio-based products
	1.7 Demonstrate an understanding of signal
	transduction pathways and their role in
	cellular communication and biotechnological
	applications.
	1.8. Examine case studies highlighting the
	manipulation of biochemical pathways for
	sustainable biotechnological solutions.
	1.9. Discuss the integration of biochemical
	knowledge in designing novel biomaterials
	and therapeutic agents.
2. Apply biochemical knowledge to solve problems	2.1. Identify and analyze biochemical challenges in
in biotechnology-related fields.	fields such as healthcare, agriculture, and
	environmental biotechnology.
	2.2. Develop strategies to optimize enzyme
	activity for industrial applications, including

biocatalysis and pharmaceutical production.
2.3. Design metabolic pathways for the efficient
synthesis of biofuels, bioplastics, or other bio-
based materials.
2.4. Evaluate the use of biochemical tools in
diagnosing and treating diseases, such as
biomarkers and enzyme inhibitors.
2.5. Apply principles of biochemistry to enhance
crop yield, pest resistance, and food nutrition
in agricultural biotechnology.
2.6. Investigate the biochemical processes
involved in bioremediation and their
applications in pollution control and waste
management.
2.7. Utilize biochemical techniques, such as
chromatography and spectrophotometry, to
solve real-world biotechnology problems.
2.8. Propose innovative biochemical approaches
for addressing global challenges, such as
sustainable energy and climate change.
2.9. Analyze case studies where biochemical
knowledge has led to breakthroughs in
biotechnology-related industries.

BE0002-4 Cell Biology and Biotechnology Applications

This study unit aims to provide learners with a detailed understanding of cellular structure and function, highlighting their critical role in biotechnology applications. Emphasis is placed on analyzing the principles of cell biology and their practical implications in advanced biotechnological processes, including cell culture, tissue engineering, and regenerative medicine. The unit fosters the ability to evaluate and apply cellular mechanisms to innovate and optimize biotechnological solutions.

Learning Outcome:	Assessment Criteria:
1. Learn the structure and function of cells a their relevance to biotechnology applications.	nd1.1. Describethestructuralcomponentsofprokaryoticandeukaryoticcells,including
	their similarities and differences.
	1.2. Explain the functions of cellular organelles,
	such as the nucleus, mitochondria, and
	endoplasmic reticulum, in maintaining cellular
	processes.
	1.3. Analyze the processes of cell division,
	significance in genetic inheritance and
	biotechnology.
	1.4. Evaluate the role of the cell membrane in
	regulating transport, communication, and
	maintaining homeostasis.
	1.5. Investigate the mechanisms of signal
	transduction and their relevance to cellular
	responses in biotechnology applications.
	1.6. Discuss the importance of stem cells and their
	1.7. Assess the applications of cell culture
	techniques in producing vaccines,
	biopharmaceuticals, and other biological
	products.
	1.8. Examine the role of cells in bioprocessing,
	such as fermentation and bioreactor design.
	1.9. Review case studies demonstrating how
	understanding cell structure and function has
	advanced biotechnological innovations.
2. Evaluate how cell biology influences	2.1. Analyze the principles of cell growth,
biotechnological processes such as cell culture	differentiation, and proliferation in the
and tissue engineering.	context of biotechnological applications.
	2.2. Evaluate the role of extracellular matrix
	components and cell adhesion in tissue
	engineering processes.

2.3. Assess the impact of cell signaling pathways
based biotechnological processes.
2.4. Investigate the influence of environmental
factors, such as pH, temperature, and nutrient availability. on cell culture systems.
2.5. Examine the applications of 3D cell culture techniques in developing organoids and
 2.6. Compare different bioreactor designs and their effectiveness in supporting large-scale
2.7. Evaluate the ethical considerations and regulatory guidelines associated with cell- based biotechnological practices.
2.8. Review advancements in stem cell technology and their integration into tissue engineering and regenerative medicine.
2.9. Discuss case studies where cell biology principles have led to breakthroughs in biopharmaceutical production and organ replacement therapies

BE0002-5 Bioinformatics and Data Analysis

The aim of this study unit is to equip learners with the knowledge and skills to utilize advanced bioinformatics tools and techniques for the analysis of complex biological data. By focusing on the interpretation of large-scale genetic and proteomic datasets, the unit prepares students to address contemporary challenges in biotechnology and life sciences through data-driven insights and innovative solutions.

Learning Outcome:	Assessment Criteria:
1. Gain proficiency in bioinformatics tools and techniques to analyze biological data.	1.1. Demonstrate the use of bioinformatics software for analyzing DNA, RNA, and protein
	Genome Browser.
	1.2. Apply sequence alignment techniques to
	compare genetic sequences and identify
	evolutionary relationships between species.
	1.3. Use molecular docking tools to analyze
	protein-ligand interactions and predict molecular behavior.
	1.4. Interpret high-throughput sequencing data,
	such as RNA-Seq and ChIP-Seq, to identify gene expression patterns and functional
	genomic information.
	using tools like Protein Data Bank (PDB) and
	PyMOL.
	1.6. Utilize statistical tools and databases, such as
	R, Bioconductor, and KEGG, to analyze large biological datasets.
	 1.7. Interpret functional genomics data to explore gene regulatory networks and pathways.
	1.8. Apply machine learning algorithms in
	bioinformatics to predict protein structure,
	gene function, and disease associations.
	1.9. Evaluate the ethical implications of using bioinformatics tools in areas like personalized
	medicine, genomics, and data privacy
2. Develop the ability to interpret large-scale	2.1. Analyze high-throughput sequencing data,
genetic and proteomic data sets.	including DNA-Seq, RNA-Seq, and Whole
	Genome Sequencing (WGS), to identify
	genetic variations and gene expression
	2.2. Use bioinformatics tools to process and clean
	large genetic datasets, ensuring accuracy and
	reliability for downstream analysis.

2.3. Interpret proteomic data generated through
techniques such as mass spectrometry,
protein arrays, and two-dimensional gel
electrophoresis.
2.4. Integrate genetic and proteomic data to
identify correlations between gene expression
and protein activity in biological systems.
2.5. Apply clustering and statistical analysis
techniques to classify genes and proteins
based on functional similarities or disease
associations.
2.6. Utilize databases and software such as
UniProt, GenBank, and STRING to interpret
protein-protein interactions and molecular
pathways.
2.7. Develop skills in visualizing large-scale
datasets using tools like heatmaps, volcano
plots, and pathway mapping software.
2.8. Assess the quality and biological relevance of
large-scale genetic and proteomic data by
applying validation techniques such as cross-
validation and reproducibility analysis.
2.9. Identify potential biomarkers or therapeutic
targets through the interpretation of multi-
omics datasets.

BE0002-6: Bioprocessing Techniques and Technologies

The aim of this study unit is to provide students with a thorough understanding of the principles and practical applications of bioprocessing techniques, including fermentation and cell culture. The unit emphasizes the evaluation and optimization of biotechnological processes for industrial applications, fostering the skills needed to enhance efficiency, scalability, and innovation in bioprocessing technologies.

Learning Outcome:	Assessment Criteria:
1. Understand the principles and applications of	1.1. Explain the fundamental principles of
bioprocessing techniques such as fermentation	bioprocessing, including the biological,
and cell culture.	the growth and production of biological
	products.
	1.2. Analyze the stages of fermentation, from
	inoculation to product recovery, and the
	factors that affect the yield and quality of
	bioproducts.
	1.3. Evaluate the types of fermentation processes,
	including batch, fed-batch, and continuous
	industrial biotechnology.
	1.4. Describe the key parameters in fermentation,
	such as pH, temperature, oxygen levels, and
	nutrient supply, and their impact on microbial
	growth and product formation.
	1.5. Investigate the principles of cell culture
	techniques used for the production of
	monoclonal antibodies.
	1.6. Assess the role of bioreactor design in
	optimizing fermentation and cell culture
	processes, including agitation, aeration, and
	temperature control.
	1.7. Discuss the applications of bioprocessing
	techniques in the production of biofuels,
	1.8 Explore the use of genetic engineering and
	metabolic pathway optimization in improving
	the efficiency of bioprocessing.
	1.9. Review case studies highlighting the
	successful implementation of fermentation
	and cell culture in industrial applications.
2. Assess how different biotechnological processes	2.1. Evaluate the role of process parameters such
can be optimized for industrial applications.	as temperature, pH, oxygen supply, and

nutrient concentration in optimizing
biotechnological processes for industrial
scale.
2.2. Analyze the use of genetic and metabolic
engineering to enhance the productivity and
efficiency of microorganisms in industrial
fermentation processes.
2.3. Assess the application of process control and
monitoring technologies, such as real-time
sensors and automation, to optimize
bioprocess conditions.
2.4. Discuss the impact of scale-up strategies,
including bioreactor design, mixing, and
aeration, on the efficiency of biotechnological
production processes.
2.5. Investigate the use of fed-batch and
continuous culture techniques to maintain
optimal growth conditions and maximize
product yields.
2.6. Examine the integration of downstream
chromatography and contribugation to
improve product recovery and purity
2.7 Evaluate the role of computational modeling
and simulation in predicting and ontimizing
bioprocess performance.
2.8. Analyze case studies where biotechnological
processes have been successfully optimized
for large-scale production, such as in
pharmaceuticals, biofuels, and food
industries.
2.9. 2 Discuss the economic and environmental
considerations in optimizing biotechnological
processes, including waste management and
energy efficiency.

BE0002-7: Genetic Engineering and Recombinant DNA Technology

The aim of this study unit is to provide learners with an in-depth understanding of genetic modification techniques and the application of recombinant DNA technology in biotechnology. Emphasis is placed on evaluating the ethical, regulatory, and practical implications of genetic engineering, equipping students to responsibly innovate and address challenges in fields such as healthcare, agriculture, and industrial biotechnology

Learning Outcome:	Assessment Criteria:
1. Gain knowledge of genetic modification	1.1. Explain the principles of genetic modification
techniques, including the use of recombinant	and the role of recombinant DNA technology
DNA technology in biotechnology.	in altering the genetic makeup of organisms
	for industrial applications.
	1.2. Describe the process of gene cloning,
	including the use of restriction enzymes,
	ligases, and vectors to introduce foreign
	genes into host cells.
	1.3. Analyze the methods of gene transfer, such as
	transformation, transfection, and
	electroporation, and their applications in
	recombinant DNA technology.
	1.4. Investigate the use of plasmids, viral vectors,
	and artificial chromosomes in the delivery of
	1.5 Assess the applications of recombinant DNA
	technology in the production of
	hiopharmaceuticals genetically modified
	crops and bio-based chemicals
	1.6. Discuss the ethical, safety, and regulatory
	considerations surrounding the use of genetic
	modification techniques in biotechnology.
	1.7. Evaluate the role of CRISPR-Cas9 and other
	gene-editing technologies in precision genetic
	modification.
	1.8. Analyze the potential of synthetic biology in
	creating novel organisms or systems through
	genetic engineering for biotechnological
	purposes.
	1.9. Review case studies where recombinant DNA
	technology has led to significant
	advancements in medicine, agriculture, and
2. Evaluate the ethical, regulatory, and practical	2.1. Assess the ethical concerns surrounding
implications of genetic engineering.	genetic engineering, including the potential
	for unintended consequences, environmental

impact, and issues related to biodiversity.
2.2. Analyze the regulatory frameworks governing
genetic engineering, such as government
policies, safety standards, and international
guidelines, and their role in ensuring
responsible use.
2.3. Discuss the societal implications of genetic
modification, particularly in areas like
genetically modified organisms (GMOs),
human genetic modification, and synthetic
biology.
2.4. Evaluate the potential risks and benefits of
genetic engineering in agriculture, including
concerns about food safety, ecological
balance, and corporate control over seeds
and crops.
2.5. Examine the ethical considerations of gene
editing technologies like CRISPR, particularly
in relation to human germline editing,
designer babies, and genetic enhancements.
2.6. Investigate the legal and intellectual property
issues related to genetic engineering,
including patenting of genetically modified
organisms and biotechnological innovations.
2.7. Consider the public perception of genetic
engineering and its influence on policy
decisions, including the role of education and
awareness in shaping opinions.
2.8. Review case studies of genetic engineering
applications, highlighting both the successes
and challenges encountered in various
Industries.
2.9. In Propose strategies to balance the benefits
of genetic engineering with ethical principles
and public concerns.

BE0002-8: Biotechnology Equipment and Instrumentation

The aim of this study unit is to equip students with practical skills in the operation, calibration, and maintenance of essential biotechnology laboratory equipment. It emphasizes the critical role of advanced instrumentation in driving research and industrial applications, fostering competence in leveraging these tools for innovation and efficiency in biotechnological practices.

Learning Outcome:	Assessment Criteria:
1. Develop skills in the use and maintenance o	f 1.1. Demonstrate proficiency in the operation of
essential biotechnology laboratory equipment.	basic laboratory equipment such as
	micropipettes, balances, centrifuges, and
	spectrophotometers for accurate
	measurement and analysis.
	1.2. Understand the principles and functions of
	more specialized biotechnology equipment,
	including PCR machines, electrophoresis
	systems, and bioreactors.
	1.3. Perform routine maintenance and calibration
	and accurate results
	1.4. Implement proper techniques for sterilization
	and decontamination of equipment, including
	autoclaving, UV sterilization, and chemical
	disinfectants.
	1.5. Analyze the role of temperature control
	equipment, such as incubators and
	refrigerators, in maintaining the integrity of
	biological samples.
	1.6. Develop troubleshooting skills to identify and
	resolve issues with laboratory equipment,
	minimizing downtime and ensuring consistent
	performance.
	1.7. Plactice proper handling and storage of
	biotechnology experiments ensuring their
	effectiveness and safety.
	1.8. Follow standard operating procedures (SOPs)
	and safety guidelines when using and
	maintaining laboratory equipment to ensure
	compliance with regulations.
	1.9. Evaluate the impact of equipment choice and
	maintenance on the efficiency and outcome
	of biotechnology experiments, with a focus on
	scalability and reproducibility.

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

2.	Understand the	role of	biote	chnology	2.1. Analyze the role of biotechnolo	gy
	instrumentation in	research	and	industrial	instrumentation in research environmen	ts,
	settings.				particularly in the development of ne	ew
	-				biological products, diagnostics, a	nd
					therapeutic applications.	
					2.2. Evaluate how laboratory instruments, such	as
					PCR machines, sequencers, and ma	ass
					spectrometers, enable advancements	in
					genomics, proteomics, and molecular biolog	gy.
					2.3. Understand the applications	of
					chromatography, electrophoresis, a	nd
					spectroscopy in analyzing complex biologic	cal
					samples, aiding in both research and qual	ity
					control.	
					2.4. Discuss the importance of bioreactors a	nd
					fermentation systems in large-sca	ale
					production processes for pharmaceutica	ils,
					biofuels, and other biotechnological product	ts.
					2.5. Investigate the role of biotechnolo	gy
					instrumentation in monitoring and optimizi	ng
					industrial bioprocesses, ensuring efficient	су,
					consistency, and regulatory compliance.	
					2.6. Examine the integration of senso	rs,
					automation, and data analysis software	in
					biotechnology instrumentation to enhan	ice
					process control and product development.	
					2.7. Assess the impact of advanced imagi	ng
					technologies, such as microscopy and flo	ЭW
					cytometry, in cell biology, drug discovery, a	nd
					diagnostics.	
					2.8. Review case studies demonstrating t	he
					effectiveness of biotechnolo	gy
					instrumentation in both resear	ch
					breakthroughs and industrial application	ns,
					highlighting innovations in production a	nd
					quality assurance.	

BE0002-9: Laboratory Safety and Quality Control

The aim of this study unit is to provide students with a comprehensive understanding of laboratory safety protocols, good laboratory practices (GLP), and quality control measures essential in biotechnology. The unit highlights the significance of adhering to safety standards and regulatory compliance to ensure the reliability, integrity, and ethical conduct of biotechnological research and production processes.

 Learn the principles of laboratory safety, good laboratory practices, and quality control in biotechnology. Understand and apply the fundamental principles of laboratory safety, including risk assessment, proper handling of chemicals, biological materials, and hazardous substances. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record- keeping. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. Implement standard operating procedures. Rassess the importance of maintaining clean and organized laboratory spaces to reduce corscrontamination and minimize variability in experimental outcomes. 	Learning Outcome:	Assessment Criteria:
 laboratory practices, and quality control in biotechnology. principles of laboratory safety, including risk assessment, proper handling of chemicals, biological materials, and hazardous substances. 12. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 13. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 14. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 15. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 16. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 17. Implement standard operating procedures. 18. Assess the importance of maintaining clean and organized laboratory scares to reduce cross-contamination and improve workflow 	1. Learn the principles of laboratory safety, good	1.1. Understand and apply the fundamental
 biotechnology. assessment, proper handling of chemicals, biological materials, and hazardous substances. 12. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 13. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 14. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 15. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 16. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 17. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 18. Assess the importance of maintaining clean and organized laboratory and improve workflow 	laboratory practices, and quality control in	principles of laboratory safety, including risk
 biological materials, and hazardous substances. 1.2. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 	biotechnology.	assessment, proper handling of chemicals,
 substances. 1.2. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce 		biological materials, and hazardous
 1.2. Demonstrate knowledge of personal protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce constamination and improve workflow 		substances.
 protective equipment (PPE) requirements, including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental proceduress (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce 		1.2. Demonstrate knowledge of personal
 including gloves, lab coats, goggles, and face shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of controll samples to monitor experimental procedures. 1.7. Implement standard operating procedures. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		protective equipment (PPE) requirements,
 shields, and when to use them in various laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		including gloves, lab coats, goggles, and face
 laboratory settings. 1.3. Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce pross-contamination and improve workflow 		shields, and when to use them in various
 Follow protocols for the safe disposal of waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record- keeping. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		laboratory settings.
 waste, including biological, chemical, and sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		1.3. Follow protocols for the safe disposal of
 sharps waste, to ensure compliance with environmental regulations. 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		waste, including biological, chemical, and
 1.4. Apply Good Laboratory Practices (GLP) to ensure accuracy, reliability, and reproducibility of experimental results, including proper documentation and record- keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		environmental regulations
 and reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		1.4 Apply Good Laboratory Practices (GLP) to
 reproducibility of experimental results, including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures. (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		ensure accuracy reliability and
 including proper documentation and record-keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures. (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		reproducibility of experimental results.
 keeping. 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		including proper documentation and record-
 1.5. Demonstrate proficiency in the use of biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		keeping.
 biosafety cabinets, fume hoods, and other containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		1.5. Demonstrate proficiency in the use of
 containment equipment to maintain a controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		biosafety cabinets, fume hoods, and other
 controlled laboratory environment and prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		containment equipment to maintain a
prevent contamination. 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow		controlled laboratory environment and
 1.6. Understand the principles and methods of quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		prevent contamination.
 quality control in biotechnology, including calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination, and improve workflow 		1.6. Understand the principles and methods of
 calibration, validation, and the use of control samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination, and improve workflow 		quality control in biotechnology, including
samples to monitor experimental procedures. 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination, and improve workflow		calibration, validation, and the use of control
 1.7. Implement standard operating procedures (SOPs) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		samples to monitor experimental procedures.
 (SOPS) to ensure consistency in laboratory operations and minimize variability in experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow 		1.7. Implement standard operating procedures
experimental outcomes. 1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow		(SOPS) to ensure consistency in laboratory
1.8. Assess the importance of maintaining clean and organized laboratory spaces to reduce cross-contamination and improve workflow		experimental outcomes
and organized laboratory spaces to reduce cross-contamination and improve workflow		1.8 Assess the importance of maintaining clean
cross-contamination and improve workflow		and organized laboratory spaces to reduce
		cross-contamination and improve workflow
efficiency.		efficiency.

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

2.	Understand the importance of maintaining	2.1. Recognize the critical role of safety standards
	safety standards to ensure the integrity of	in protecting researchers, workers, and the
	biotechnological research and production.	public from potential hazards associated with
		biotechnology research and production.
		2.2. Analyze the risks involved in handling
		genetically modified organisms (GMOs),
		chemicals, and biological materials, and the
		need for containment and precautionary
		measures.
		2.3. Understand the regulatory frameworks
		governing biotechnology safety, such as
		biosafety levels (BSL) and guidelines provided
		by OSHA, EPA, and the FDA, and their role in
		ensuring safe practices.
		2.4. Evaluate the significance of laboratory and
		production facility design in minimizing
		exposure to biological, chemical, and physical
		hazards, including proper ventilation,
		containment, and waste management
		systems.
		2.5. Assess the importance of rigorous safety
		training for personnel to ensure awareness
		and compliance with laboratory safety
		protocols and emergency response
		2.6 Discuss the implementation of safety audits
		inspections and risk assessments to identify
		and mitigate potential hazards, ensuring
		continuous improvement in safety standards.
		2.7. Understand the need for maintaining the
		integrity of biotechnological products through
		the prevention of contamination, ensuring
		product quality, and compliance with
		regulatory requirements.
		2.8. Examine the role of personal protective
		equipment (PPE) in safeguarding laboratory
		workers from exposure to hazardous
		substances and biological agents.
		2.9. Evaluate the ethical and legal implications of
		failing to adhere to safety standards, including
		the potential for harm to public health,
		environmental impact, and loss of research
		credibility.

BE0002-10: Microbiology and Biotechnology

The aim of this study unit is to provide learners with an in-depth understanding of the interplay between microbiology and biotechnology, focusing on key areas such as microbial fermentation, pathogen control, and antibiotic development. The unit emphasizes the analysis and application of microorganisms in industrial biotechnology processes, fostering the ability to innovate and optimize microbial solutions for diverse biotechnological challenges.

Learning Outcome:	Assessment Criteria:
1. Understand the relationship between	1.1. Analyze the foundational role of microbiology in
microbiology and biotechnology in areas such as	biotechnology, particularly in the development
microbial fermentation, pathogen control, and	and application of microbial processes for
antibiotic development.	industrial purposes such as fermentation.
	1.2. Understand the mechanisms of microbial
	fermentation, including the metabolic pathways
	of microorganisms and their use in the
	production of biofuels, pharmaceuticals, and
	food products.
	1.3. Explore the use of genetically engineered
	microorganisms in biotechnology for enhanced
	fermentation processes, increasing yield and
	product efficiency.
	1.4. Evaluate the role of microbiology in pathogen
	control, including the development of probiotics,
	vaccines, and antimicrobial agents to prevent or
	treat infectious diseases.
	1.5. Investigate the processes and technologies
	involved in isolating and identifying microbial
	pathogens, which are essential for the
	development of diagnostic tools and therapeutic
	strategies.
	1.6. Understand the significance of microbiological
	antibiotics focusing on the mechanisms of
	antibiotics, rocusing on the mechanisms of
	development
	1.7 Examine the use of microorganisms in
	hioremediation where they degrade pollutants
	and waste products contributing to
	environmental sustainability
	1.8 Discuss the contributions of microhiology to the
	field of synthetic biology where microorganisms
	are engineered to produce valuable bioproducts
	such as biofuels, chemicals, and materials.

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

	1.9. Review case studies where microbiology and
	biotechnology intersect to solve global
	challenges, including food security, healthcare,
	and environmental protection.
2. Analyze the use of microorganisms in industrial	2.1. Evaluate the role of microorganisms in industrial
biotechnology applications.	biotechnology, focusing on their use in the
	production of biofuels, such as ethanol and
	biodiesel, through fermentation processes.
	2.2. Analyze the contribution of microorganisms in
	the production of high-value biochemicals,
	enzymes, and bio-based materials, highlighting
	their efficiency and cost-effectiveness in
	industrial applications.
	2.3. Discuss the use of genetically engineered
	microorganisms to optimize industrial processes,
	such as improving yield, reducing production
	costs, and enhancing product purity in
	pharmaceuticals and food industries.
	2.4. Investigate the role of microorganisms in waste
	treatment and bioremediation, where they
	degrade pollutants, process industrial waste, and
	help in environmental clean-up.
	2.5. Explore the use of microorganisms in the
	production of specialty chemicals, including
	organic acids, amino acids, and antibiotics,
	emphasizing fermentation and metabolic
	engineering.
	2.6. Assess the application of microorganisms in the
	formentation of dainy products alsobalis
	hereing and probletics
	2.7 Examine the role of microorganisms in the
	2.7. Examine the role of microorganisms in the
	hionharmaceuticals including the production of
	theraneutic proteins and monoclonal antibodies
	using microhial expression systems
	2.8 Review case studies where microorganisms have
	been successfully applied in large-scale industrial
	biotechnology settings, focusing on innovations
	in process efficiency and product development.

BE0002-11: Plant and Animal Biotechnology

The aim of this study unit is to provide students with a comprehensive understanding of the biotechnological applications in plant and animal genetics, focusing on techniques such as gene editing and cloning. The unit explores the potential impacts of these biotechnologies on agriculture and medicine, fostering critical thinking and evaluation of the ethical, economic, and societal implications of plant and animal biotechnology advancements.

Learning Outcome: Ass	essment Criteria:
1. Study the biotechnological applications in plant 1.1	. Analyze the role of biotechnology in plant
and animal genetics, including gene editing and	genetics, focusing on genetic modification
cloning.	techniques such as transgenesis, gene editing,
	and cloning to improve crop yields, resistance to
	pests, and tolerance to environmental stresses.
1.2	2. Understand the application of gene editing
	technologies like CRISPR-Cas9 in modifying plant
	genomes to introduce desirable traits, such as
	drought resistance, enhanced nutritional
	content, and disease resistance.
1.3	. Investigate the use of gene cloning in plants,
	including the production of genetically identical
	plants for agricultural purposes, such as cloning
	conservation
1/	Evaluate the ethical environmental and
1	regulatory implications of genetically modified
	(GM) plants, including public concerns over
	GMOs and their impact on biodiversity.
	ecosystems, and food security.
1.5	5. Discuss the use of biotechnology in animal
	genetics, including cloning and gene editing
	techniques used to improve livestock
	productivity, disease resistance, and overall
	health.
1.6	5. Explore the application of gene editing in animals
	for the development of genetically modified
	organisms (GMOs) in research, agriculture, and
	medicine, such as creating disease-resistant
	animals or enhancing meat quality.
1.7	2. Examine the potential of cloning technologies in
	animal preeding, focusing on reproductive
	cioning, the production of genetically identical
	animals for agricultural purposes, and cioning for

	 1.8. Evaluate the use of biotechnology in animal reproduction, including assisted reproductive technologies (ART) like in vitro fertilization (IVF) and embryo transfer, to enhance breeding efficiency and genetic diversity in livestock. 1.9. Review case studies of successful biotechnological applications in plant and animal genetics, emphasizing breakthroughs in agriculture, conservation, and medical research, while also addressing the associated risks and benefits.
2. Assess the potential impact of plant and animal biotechnology on agriculture and medicine.	 2.1. Evaluate the potential of plant biotechnology to enhance agricultural productivity, focusing on the development of genetically modified (GM) crops with improved resistance to pests, diseases, and environmental stresses such as drought and extreme temperatures. 2.2 Assess how genetic modification and gene
	2.2. Assess now genetic modification and gene editing technologies in plants can improve crop nutritional content, such as increasing the levels of vitamins, minerals, and other essential nutrients, addressing global food security and malnutrition.
	2.3. Analyze the environmental benefits of plant biotechnology, including reduced pesticide use, increased crop yields on smaller land areas, and the potential for more sustainable farming practices through genetically engineered plants.
	2.4. Investigate the role of plant biotechnology in biofortification, where crops are genetically engineered to address nutrient deficiencies in populations, such as Golden Rice, which is engineered to produce higher levels of vitamin A.
	2.5. Examine the potential applications of animal biotechnology in agriculture, including the development of disease-resistant livestock, improved feed efficiency, and enhanced meat, milk, and wool production.
	2.6. Assess the use of gene editing technologies, such as CRISPR, to create livestock with improved health, resistance to diseases like bovine tuberculosis and avian influenza, and better adaptability to different farming environments.
	2.7. Explore the ethical concerns and public

www.ictqualab.co.uk

ICTQual Level 5 Diploma in Biotechnology Engineering 240 Credits – Two Years

perception surrounding genetically modified animals, including the risks of unintended
ecological effects, animal welfare, and the long-
term sustainability of genetically engineered livestock.
2.8. Analyze the contribution of biotechnology in medicine, particularly in the development of genetically modified organisms (GMOs) to produce therapeutic proteins, hormones, vaccines, and antibodies for treating various diseases.
2.9. Investigate the potential of gene therapy, stem cell technology, and regenerative medicine derived from animal biotechnology to treat genetic disorders, organ failures, and degenerative diseases in humans.

BE0002-12: Industrial Biotechnology and Biomanufacturing

The aim of this study unit is to provide students with a comprehensive understanding of the role of biotechnology in industrial processes and biomanufacturing, including the production of biofuels, biochemicals, and pharmaceuticals. The unit emphasizes the evaluation of the economic, environmental, and sustainability benefits of industrial biotechnology, equipping students with the knowledge to assess its impact on modern manufacturing and contribute to innovation in biotechnological industries.

Learning Outcome:	Assessment Criteria:
1. Understand the role of biotechnology in industrial processes and manufacturing, including the production of biofuels,	1.1. Analyze the role of biotechnology in industrial processes, focusing on how microorganisms, enzymes, and genetically modified organisms (CMOs) are used to enhance the production
biochemicais, and pharmaceuticais.	of biofuels, biochemicals, and
	1.2. Understand the principles of microbial fermentation and its application in the large-scale production of biofuels, such as ethanol
	and biodiesel, contributing to renewable energy solutions and reducing dependence on fossil fuels.
	1.3. Explore the use of biotechnological methods in the production of biochemicals, such as organic acids, amino acids, and enzymes, emphasizing the role of microbial fermentation and enzyme catalysis in industrial applications.
	1.4. Investigate how biotechnology improves the efficiency and sustainability of pharmaceutical production, including the use of genetically engineered microorganisms to produce therapeutic proteins, monoclonal antibodies, and vaccines.
	1.5. Assess the impact of biocatalysis in industrial manufacturing, where enzymes are used to catalyze chemical reactions in more environmentally friendly conditions, reducing the need for harsh chemicals and high energy consumption.
	1.6. Examine the development of bioprocessing techniques, such as bioreactors and upstream/downstream processing, to optimize the yield, purity, and scalability of biotechnology-derived products in industrial

	 settings. 1.7. Understand the use of synthetic biology to design microorganisms capable of producing high-value compounds, such as bio-based plastics, biodegradable polymers, and fine chemicals for industrial applications. 1.8. Discuss the potential for biotechnology to enable circular economy principles in manufacturing, such as using waste materials as feedstock for biofuel and bioplastic production, reducing environmental impact. 1.9. Evaluate case studies of successful biotechnology applications in industrial processes, focusing on real-world examples from biofuel production, the chemical industry, and pharmaceutical manufacturing to highlight innovations and advancements.
2. Evaluate the economic and environmental	2.1 Assess the economic benefits of industrial
 Evaluate the economic and environmental benefits of industrial biotechnology. 	 2.1. Assess the economic benefits of industrial biotechnology, including cost reductions in raw materials and energy consumption through the use of biocatalysis and fermentation processes, leading to more efficient and sustainable manufacturing. 2.2. Analyze the potential for industrial biotechnology to drive job creation in emerging sectors, such as renewable energy, biopharmaceuticals, and green chemicals, stimulating economic growth and technological innovation. 2.3. Evaluate the role of biotechnology in improving product yields and quality, resulting in higher profitability for companies involved in the production of biofuels, biochemicals, and pharmaceuticals.
	 2.4. Investigate the environmental benefits of industrial biotechnology, such as the reduction of greenhouse gas emissions by replacing fossil fuel-based processes with biobased alternatives, contributing to climate change mitigation. 2.5. Explore the potential for industrial biotechnology to reduce waste and improve resource efficiency by converting agricultural, industrial, and municipal waste into valuable

products like biofuels, biochemicals, and
bioplastics, promoting a circular economy.
2.6. Examine the reduction in the use of harmful
chemicals and solvents in manufacturing
processes through biocatalysis and enzyme-
based reactions, which lower pollution and
improve sustainability in industrial
production.
2.7. Discuss the environmental advantages of
using renewable biomass as feedstock in
industrial biotechnology, reducing the
environmental footprint of manufacturing
processes compared to traditional
petrochemical-based industries.
2.8. Assess the contribution of industrial
biotechnology to sustainable agriculture
through the development of bio-based
fertilizers and pesticides, reducing
dependency on synthetic chemicals and
minimizing soil and water pollution.
2.9. Evaluate case studies of successful industrial
biotechnology applications that demonstrate
measurable economic and environmental
benefits, including innovations in green
energy, waste-to-value technologies, and
sustainable manufacturing practices.

BE0002-13: Biostatistics and Experimental Design

The aim of this study unit is to equip students with a solid foundation in biostatistics and experimental design, enabling them to critically analyze and interpret experimental data. The unit focuses on the application of statistical methods to validate biotechnological research results, ensuring accuracy, reliability, and scientific rigor in biotechnological studies and experiments.

Learning Outcome:					Assessment Criteria:	
Lea	arning Ou Learn t experim experim	tcome: he fundamen ental design ental data.	tals of to c	biostatis	stics and analyze	 Assessment Criteria: 1.1. Understand the key concepts of biostatistics, including descriptive statistics, probability distributions, and inferential statistics, to interpret experimental data effectively. 1.2. Gain knowledge of experimental design principles, such as hypothesis formulation, control groups, randomization, and sample size calculation, to ensure robust and reliable results in biological experiments. 1.3. Learn how to select appropriate statistical methods for different types of biological data, including t-tests, ANOVA, regression analysis, and chi-square tests, based on the nature and distribution of the data. 1.4. Develop the ability to identify and control for potential confounding variables and biases in experimental design, ensuring the validity and accuracy of conclusions drawn from the data. 1.5. Apply statistical tools to analyze data from experiments involving biological variables, recognizing patterns and relationships between variables while considering experimental limitations. 1.6. Understand the importance of data visualization techniques, such as histograms, scatter plots, and box plots, to present and interpret complex biological data clearly and effectively. 1.7. Evaluate the assumptions underlying common statistical tests and assess whether data meets these assumptions before performing statistical analyses, ensuring the reliability of results. 1.8. Develop skills in interpreting p-values, confidence intervals, and effect sizes to assess the statistical significance and practical importance of
2.	Apply	statistical	methods	to	validate	2.1. Apply descriptive statistics, such as mean,

biotechnological research results.	median, standard deviation, and variance, to
	summarize and describe the central tendency and
	variability of biotechnological research data,
	ensuring clarity in the presentation of results.
	2.2. Use inferential statistical methods, including t-
	tests, ANOVA, and regression analysis, to make
	predictions or draw conclusions from sample data
	in biotechnological research, assessing the
	significance of observed effects.
	2.3. Implement non-parametric statistical tests, such
	as the Mann-Whitney U test or Kruskal-Wallis
	test, when data does not meet normality
	assumptions, ensuring valid conclusions in cases
	of non-normally distributed data.
	2.4. Apply multivariate statistical techniques, such as
	principal component analysis (PCA) or cluster
	analysis, to analyze complex, high-dimensional
	data sets, helping identify patterns, relationships,
	and groupings in biotechnological research.
	2.5. Utilize statistical modeling, including linear and
	logistic regression, to assess the impact of various
	independent variables on dependent outcomes,
	enabling a better understanding of cause-and-
	2.6 Derform statistical validation of eventimental
	2.6. Perioriti statistical validation of experimental
	findings are not due to random chance and
	assessing the strength of evidence supporting
	research conclusions
	2.7 Assess the statistical power of an experiment
	through power analysis to ensure that the sample
	size is adequate to detect significant effects.
	minimizing the likelihood of type I and type II
	errors.
	2.8. Apply statistical software tools (e.g., SPSS, R, SAS)
	to conduct advanced statistical analyses,
	improving efficiency and accuracy in processing
	complex datasets from biotechnological research.

BE0002-14: Environmental Biotechnology

The aim of this study unit is to provide students with a thorough understanding of the applications of biotechnology in environmental management, including waste treatment, bioremediation, and sustainable practices. The unit emphasizes the evaluation of biotechnological solutions to address pressing environmental challenges, fostering the development of innovative approaches for sustainability and ecological preservation.

Learning Outcome:	Assessment Criteria:
1. Understand the applications of biotechnology in environmental management, including waste treatment, bioremediation, and sustainability.	1.1. Understand the role of biotechnology in environmental management by exploring its applications in waste treatment, where
	microorganisms, enzymes, and biofilms are used to break down pollutants, reduce waste, and convert hazardous substances into less harmful by-products.
	1.2. Investigate the process of bioremediation, where living organisms, such as bacteria, fungi, and plants, are utilized to detoxify or remove pollutants from contaminated soil, water, and air, contributing to ecosystem restoration and environmental health
	1.3. Explore the use of genetically engineered microorganisms in bioremediation to enhance the degradation of specific pollutants, such as petroleum hydrocarbons, heavy metals, and organic solvents, improving the efficiency of environmental cleanup efforts.
	1.4. Learn about the application of biotechnology in wastewater treatment, including the use of microbial communities in activated sludge systems and biofilm reactors to remove organic and inorganic contaminants from wastewater, ensuring the protection of water resources.
	1.5. Understand the role of biotechnology in the development of sustainable energy sources, such as biofuels and biogas, produced from renewable biomass through microbial fermentation and anaerobic digestion processes, reducing dependence on fossil fuels and lowering greenhouse gas emissions.
	1.6. Examine the use of biotechnology in agriculture for sustainable practices, such as the development of genetically modified

	crops with improved resistance to pests,
	diseases, and environmental stresses,
	reducing the need for chemical pesticides and
	fertilizers.
	1.7. Investigate how biotechnological approaches
	can be integrated into waste-to-energy
	processes, where organic waste is converted
	into valuable energy sources like biogas,
	contributing to a circular economy and
	reducing landfill waste.
	1.8. Analyze the potential for biotechnology to
	address climate change by reducing carbon
	emissions, enhancing carbon sequestration,
	through the use of sustainable
	hiotechnological practices in industrial
	sectors
	1.9. Understand the concept of environmental
	biotechnology, which combines biological
	processes with engineering techniques to
	develop innovative solutions for waste
	management, pollution control, and
	environmental sustainability.
2 Evaluate biotechnological solutions for	2.1 Assess the effectiveness of various
2. Evaluate biotechnological solutions for addressing environmental challenges	hiotechnological solutions in mitigating
addressing environmental chanenges.	environmental issues such as pollution.
	climate change, and resource depletion.
	2.2. Analyze the environmental impact of different
	biotechnological approaches, considering
	biotechnological approaches, considering sustainability, long-term viability, and
	biotechnological approaches, considering sustainability, long-term viability, and ecological balance.
	biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling,
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies.
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change.
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change. 2.5. Compare the scalability and cost offectiveness
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change. 2.5. Compare the scalability and cost-effectiveness of biotechnological solutions in addressing
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change. 2.5. Compare the scalability and cost-effectiveness of biotechnological solutions in addressing environmental challenges on a global scale
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change. 2.5. Compare the scalability and cost-effectiveness of biotechnological solutions in addressing environmental challenges on a global scale. 2.6. Investigate the regulatory frameworks and
	 biotechnological approaches, considering sustainability, long-term viability, and ecological balance. 2.3. Investigate the role of biotechnology in reducing waste and promoting recycling, including its effectiveness in waste treatment technologies. 2.4. Evaluate the efficiency of biotechnological methods in restoring ecosystems and habitats affected by human activity or climate change. 2.5. Compare the scalability and cost-effectiveness of biotechnological solutions in addressing environmental challenges on a global scale. 2.6. Investigate the regulatory frameworks and ethical considerations associated with

environmental issues.
2.7. Critically review case studies where
biotechnology has been applied to solve environmental problems, highlighting successes and areas for improvement.
2.8. Identify potential risks or unintended consequences of biotechnological solutions for the environment, proposing strategies for risk mitigation.
2.9. Recommend improvements or innovative biotechnological solutions based on the analysis of current practices and emerging technologies in environmental protection.

Support@ictqualab.co.uk

BE0002-15: Bioethics and Regulatory Considerations

The aim of this study unit is to explore the ethical, legal, and regulatory dimensions of biotechnological research and applications. It focuses on critical analysis of current debates in biotechnology, such as genetic modification, patenting, and the social implications of biotechnological innovations, equipping students with the tools to navigate and address ethical challenges in the field.

biotechnology, such as genetic modification and	genetic modification of organisms, including
patenting.	potential risks to human health, biodiversity,
	and the environment.
	2.2. Analyze the implications of genetically
	modified crops on food security, agricultural
	practices, and socio-economic issues such as
	access and equity.
	2.3. Evaluate the debate on the safety and
	regulation of genetically modified organisms
	(GMOs) in food, medicine, and environmental
	applications.
	2.4. Assess the impact of patenting in
	biotechnology, focusing on issues such as
	intellectual property rights, innovation
	incentives, and access to essential
	technologies.
	2.5. Investigate the concerns related to biopiracy,
	where genetic resources from indigenous
	populations or developing countries are
	patented without fair compensation.
	2.6. Analyze the role of blotech patents in driving
	boolthcore agriculture and renewable energy
	soctors
	2.7 Evaluate the arguments for and against the
	commercialization of gene editing
	technologies like CRISPR including the ethical
	dilemmas and long-term consequences.
	2.8. Examine public perception and resistance to
	biotechnology, considering cultural,
	environmental, and economic factors
	influencing attitudes toward genetic
	modification and patenting.
	2.9. Investigate the role of international
	agreements and policies, such as the
	Cartagena Protocol, in addressing global
	concerns related to genetic modification and
	patenting practices.

BE0002-16: Biochemical Engineering Principles

The aim of this study unit is to provide students with a foundational understanding of the key principles of biochemical engineering, including enzyme kinetics, mass transfer, and bioreactor design. The unit emphasizes the application of engineering concepts to optimize biotechnological production processes, equipping students with the knowledge and skills to enhance efficiency and scalability in biotechnological manufacturing.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Understand the principles of biodengineering, including enzyme kinetics transfer, and bioreactor design.	Assessment Criteria: hemical 1.1. Demonstrate an understanding of enzyme kinetics, including the Michaelis-Menten model, enzyme inhibition, and factors influencing enzyme activity. 1.2. Analyze the relationship between enzyme concentration, substrate concentration, and reaction rate to optimize biochemical processes. 1.3. Investigate the principles of mass transfer in biochemical systems, focusing on diffusion, convection, and the role of concentration gradients in reaction efficiency. 1.4. Assess the impact of mass transfer limitations in bioprocesses, including the design of strategies to improve substrate and product transport in biochemical reactions. 1.5. Understand the design, operation, and scaling of bioreactors, including factors such as mixing, oxygen transfer, temperature control, and pH regulation. 1.6. Evaluate the types of bioreactors (e.g., batch, continuous, and fed-batch) and their applications in different biochemical engineering processes. 1.7. Analyze the effects of shear stress and hydrodynamics on microbial growth and enzyme activity in bioreactor environments. 1.8. Understand the concept of metabolic control analysis and its application in optimizing biotechnological processes. 1.9. Explore the integration of biochemical engineering principles with other engineering disciplication content of principles with other engineering disciplication of principles with other engineering disciplication of biochemical engineering principles with other engineering disciplication of biochemical engineering disciplication of biochemical engineering disciplication of biochemical engineering disciplication of biochemical engineering disciplication of biochemica
2. Apply engineering principles to a	disciplines, such as mechanical and chemical engineering, to enhance bioprocess efficiency and sustainability.

www.ictqualab.co.uk

biotechnological production processes.	techniques to optimize biotechnological
	production, ensuring efficient conversion of
	raw materials to desired products.
	2.2. Utilize principles of thermodynamics and fluid
	mechanics to optimize the energy efficiency
	and material flow within biotechnological
	systems.
	2.3. Apply mass and heat transfer principles to
	improve the rate of biochemical reactions,
	ensuring optimal conditions for microbial or enzymatic processes.
	2.4. Assess and select appropriate bioreactor
	configurations, operational modes (batch,
	continuous, fed-batch), and scale-up
	strategies to maximize production yields.
	2.5. Implement process control and automation
	systems to monitor and adjust critical
	parameters such as temperature, pH,
	time
	2.6 Apply principles of separation processes such
	as filtration centrifugation and
	chromatography, to purify products and by-
	products effectively.
	2.7. Optimize fermentation and downstream
	processing techniques to increase
	productivity while maintaining product quality
	and minimizing waste.
	2.8. Integrate sustainability practices by reducing
	resource consumption, improving waste
	angineering solutions in production
	processes
	2.9. Use statistical methods and design of
	experiments (DOE) to evaluate process
	variables and make data-driven decisions for
	process improvement.

BE0002-17: Protein Engineering and Expression Systems

The aim of this study unit is to provide students with a thorough understanding of protein engineering techniques, enabling them to design and modify proteins for targeted biotechnological applications. The unit also emphasizes the evaluation of various expression systems, such as bacterial, yeast, and mammalian cells, to optimize protein production and functionality in diverse biotechnological processes.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Gain knowledge in protein engineering techniques for creating and modifying proteins for specific applications.	 Assessment Criteria: 1.1. Understand the fundamental principles of protein structure and function, including the role of amino acids, folding, and post-translational modifications in determining protein activity. 1.2. Learn the techniques for protein expression, such as recombinant DNA technology, to produce proteins in various host systems (e.g., bacteria, yeast, mammalian cells). 1.3. Apply site-directed mutagenesis and other genetic manipulation methods to modify protein sequences and enhance desired properties such as stability, activity, or specificity. 1.4. Investigate the use of protein engineering tools like directed evolution and rational design to create proteins with improved or novel functions for specific applications. 1.5. Explore protein purification techniques, including chromatography, electrophoresis, and ultrafiltration, to isolate and characterize engineered proteins. 1.6. Understand the applications of protein engineering in fields such as pharmaceuticals, biofuels, food processing, and environmental sustainability. 1.7. Evaluate the role of computational tools and molecular modeling in predicting and designing protein structures and interactions. 1.8. Investigate the challenges associated with the large-scale production of engineered proteins, including optimization of yield, solubility, and functional activity. 1.9. Assess the safety, ethical, and regulatory considerations.
2. Evaluate the various expression systems used in	2.1. Analyze the advantages and limitations of

www.ictqualab.co.uk

biotechnology, such as b	oacterial,	yeast,	and	bacterial expression systems, such as E. coli, in
mammalian cells.				terms of speed, cost, and scalability, as well as
				challenges related to protein folding, solubility,
				and post-translational modifications.
				2.2. Evaluate the use of yeast expression systems (e.g.,
				Saccharomyces cerevisiae and Pichia pastoris),
				focusing on their ability to produce glycosylated
				proteins and the advantages of higher yields and
				eukaryotic-like modifications compared to
				bacterial systems.
				2.3. Assess the suitability of mammalian cell
				expression systems (e.g., CHO, HEK293) for
				producing complex proteins, including therapeutic
				proteins, antibodies, and glycoproteins,
				emphasizing their capacity for proper folding and
				post-translational modifications.
				2.4. Compare the scalability of each expression
				system, considering factors such as growth rates,
				culture conditions, and ease of scale-up for
				industrial applications.
				2.5. Investigate the costs associated with each
				expression system, including media, labor,
				equipment, and purification costs, to determine
				economic feasibility for large-scale production.
				2.6. Assess the ethical and regulatory concerns related
				to each expression system, particularly for
				(CMOs) and their implications
				(GMOS), and their implications in
				2.7 Evaluate the potential of plant based evaluation
				2.7. Explore the potential of plant-based expression
				systems (e.g., tobacco of algae), evaluating their
				limitations in terms of protein yield and quality
				2.8 Analyze the impact of host cell type on the
				quality nurity and activity of the expressed
				protein and determine which system is most
				suitable for specific types of proteins (e.g.
				therapeutic proteins, industrial enzymes).
				2.9. Investigate recent advancements in expression
				systems, including the development of hybrid
				systems and the use of cell-free protein synthesis.
				to improve efficiency and overcome limitations of
				traditional host systems.
				-,

BE0002-18: Fermentation Technology in Biotechnology

The aim of this study unit is to provide students with a comprehensive understanding of the principles and applications of fermentation processes in biotechnology. The unit focuses on evaluating fermentation techniques used in the production of biofuels, pharmaceuticals, and other bioproducts, equipping students with the knowledge to optimize and innovate within industrial fermentation systems for diverse biotechnological applications.

Learning Outcome:	Assessment Criteria:
1. Understand the principles and applications of	1.1. Understand the fundamental principles of
fermentation processes in biotechnology.	fermentation, including the conversion of
	organic substrates (such as sugars) into desired
	products (e.g., alcohol, acids, gases) through
	microbial or enzymatic activity under controlled
	conditions.
	1.2. Learn the types of fermentation processes, such
	as aerobic and anaerobic fermentation, and their
	relevance in producing different products in
	biotechnology.
	1.3. Explore the role of microorganisms (bacteria,
	yeast, fungi) in fermentation, focusing on their
	metabolic pathways, growth conditions, and
	productivity.
	1.4. Understand the importance of fermentation
	parameters like temperature, pH, nutrient
	supply, oxygen transfer, and agitation in
	formation
	101111dtion.
	hioreactors for fermentation including
	considerations for scale-up mixing and
	maintaining sterile conditions in both laboratory
	and industrial settings
	1.6. Apply fermentation techniques in the production
	of a wide range of biotechnological products.
	such as biofuels, pharmaceuticals, food and
	beverages, and enzymes.
	1.7. Understand the role of fermentation in
	environmental biotechnology, including its use in
	waste treatment, bioremediation, and the
	production of bio-based chemicals.
	1.8. Evaluate the challenges in fermentation
	processes, such as contamination control,
	product inhibition, and maximizing yield, and

	identify strategies to overcome these challenges.
2. Evaluate fermentation techniques used in the	2.1. Assess the fermentation techniques used in
production of biofuels, pharmaceuticals, and	biofuel production, including ethanol and
2. Evaluate fermentation techniques used in the production of biofuels, pharmaceuticals, and other bioproducts.	 identify strategies to overcome these challenges. 2.1. Assess the fermentation techniques used in biofuel production, including ethanol and biodiesel, focusing on feedstock selection, fermentation conditions, and microbial strain optimization to improve yield and efficiency. 2.2. Evaluate the use of anaerobic fermentation for bioethanol production from renewable biomass sources (e.g., lignocellulosic materials) and the challenges related to feedstock pretreatment, inhibitor removal, and enzyme efficiency. 2.3. Analyze the fermentation processes involved in the production of biohydrogen and methane, exploring microbial communities and metabolic pathways that enhance bioenergy production. 2.4. Investigate the role of fermentation in pharmaceutical production, such as antibiotics (e.g., penicillin), vaccines, and recombinant proteins, evaluating the importance of selecting appropriate microorganisms, optimizing fermentation conditions, and ensuring product quality and purity.
	 appropriate microorganisms, optimizing fermentation conditions, and ensuring product quality and purity. 2.5. Evaluate the use of genetically engineered microorganisms in pharmaceutical fermentation to improve yield, production rate, and specific product characteristics, particularly in the product characteristics.
	 2.6. Assess fermentation techniques for the production of industrial enzymes (e.g., amylases, proteases) used in food, textile, and detergent industries, focusing on optimization of microbial strains, process conditions, and cost-efficiency.
	2.7. Examine the use of solid-state fermentation (SSF) versus submerged fermentation (SmF) in the production of bioproducts, considering differences in process conditions, product types, and scalability.
	2.8. Investigate fermentation strategies for producing high-value biochemicals (e.g., organic acids, amino acids, and bioplastics) by optimizing metabolic pathways in microorganisms and enhancing process yield.

BE0002-19: Bioprocess Control and Optimization

The aim of this study unit is to provide students with a deep understanding of techniques for monitoring and optimizing biotechnological processes, including process modelling and control strategies. The unit emphasizes the practical application of these techniques to improve efficiency, scalability, and product quality in biotechnological manufacturing, preparing students to drive innovation and ensure optimal performance in bioprocess industries.

Learning Outcome:	Assessment Criteria:
 Learn the techniques for monitoring and optimizing biotechnological processes, including process modeling and control strategies. 	 1.1. Understand the principles of process modeling in biotechnology, including the development of mathematical models to simulate biological reactions, microbial growth, and product formation in bioreactors. 1.2. Learn to use computational tools and software for process simulation, such as MATLAB or Aspen Plus, to model biotechnological processes and predict the behavior of systems under different operating conditions.
	 1.3. Investigate the key parameters to monitor during biotechnological processes, including temperature, pH, dissolved oxygen, nutrient levels, and biomass concentration, to ensure optimal performance. 1.4 Explore advanced process control strategies, such
	as feedback and feedforward control, to maintain optimal conditions in bioreactors and minimize deviations from desired product yields.
	1.5. Understand the use of sensors and online monitoring systems for real-time data collection and process optimization, including the integration of these systems into automation platforms for continuous monitoring.
	1.6. Learn about process analytical technology (PAT) and its role in ensuring quality by providing real- time information on critical quality attributes, enabling adjustments to the process without the need for end-product testing.
	1.7. Analyze the use of statistical process control (SPC) and design of experiments (DOE) to identify key process variables and optimize biotechnological processes based on empirical data.
	1.8. Examine the integration of process control with industrial automation systems to enhance

	efficiency, reduce human error, and enable large-
	scale biotechnological production.
2. Apply these techniques to enhance efficiency	2.1. Apply process modeling techniques to identify key
and product quality in biotechnological	factors that influence product yield and quality,
manufacturing.	allowing for targeted adjustments in operating
	conditions such as temperature, pH, and nutrient
	concentrations to enhance efficiency.
	2.2. Use real-time monitoring and sensor systems to
	continuously track critical parameters (e.g.,
	dissolved oxygen, glucose concentration, and
	biomass levels), ensuring that bioreactors operate
	under optimal conditions to minimize fluctuations
	and prevent product loss.
	2.3. Implement advanced process control strategies,
	such as Model Predictive Control (MPC), to
	stability enhancing both product consistency and
	overall process efficiency
	2.4. Utilize statistical process control (SPC) to detect
	variations in production processes early, reducing
	the likelihood of defects and ensuring that the
	process remains within desired operating ranges.
	2.5. Apply the Design of Experiments (DOE) method to
	systematically optimize multiple process variables
	simultaneously, improving process efficiency and
	maximizing product output while maintaining
	product quality.
	2.6. Integrate process analytical technology (PAT) for
	real-time analysis, allowing operators to monitor
	immediate adjustments to the process improving
	product consistency and reducing batch-to-batch
	variability
	2.7. Use automation and control systems to
	standardize operations, reducing human error
	and increasing throughput in biotechnological
	manufacturing, leading to more reliable and
	scalable processes.
	2.8. Enhance microbial strain optimization through
	genetic engineering and adaptive laboratory
	evolution, improving the efficiency of production
	pathways and ensuring the high-quality output of
	desired bioproducts.

BE0002-20: Biotechnology in Drug Development

The aim of this study unit is to provide students with a comprehensive understanding of the role of biotechnology in the drug discovery, development, and manufacturing processes. The unit focuses on analyzing the potential of biotechnological innovations to create novel therapies and address unmet medical needs, equipping students with the knowledge to contribute to the advancement of biotechnology in pharmaceutical development.

Learning Outcome:	Assessment Criteria:
1. Understand the role of biotechnology in dru	g 1.1. Understand the fundamental principles of
discovery, development, and manufacturing.	biotechnology as applied to drug discovery,
	including the identification of therapeutic
	targets, the use of high-throughput screening,
	and the development of assays for drug
	efficacy and toxicity testing.
	1.2. Learn about the role of recombinant DNA
	technology, monoclonal antibodies, and gene
	editing tools (e.g., CRISPR) in the discovery of
	new drug candidates and the development of
	biologics, such as therapeutic proteins and
	vaccines.
	1.3. Explore the use of cell-based systems,
	including human and animal models, for drug
	testing and the optimization of drug
	candidates during the preclinical and clinical
	development stages.
	in the development of personalized medicine
	including the use of biomarkers and genetic
	profiling to tailor treatments to individual
	natient needs
	1.5. Investigate the biomanufacturing processes
	involved in the production of drugs, focusing
	on the use of microbial, yeast, and
	mammalian cell cultures to produce biologic
	drugs like insulin, monoclonal antibodies, and
	vaccines.
	1.6. Learn about bioprocess engineering
	techniques used in scaling up the production
	of biologic drugs, ensuring consistency, yield,
	and quality across large-scale manufacturing
	operations.
	1.7. Understand the regulatory requirements and
	quality control processes involved in
	biotechnological drug development, including

 the role of the FDA, EMA, and other regulatory bodies in approving and overseeing biologics. 1.8. Examine the challenges and innovations in the manufacturing of biopharmaceuticals, such as the need for specialized equipment, maintaining sterility, and optimizing cell culture conditions to ensure the efficient production of high-quality drugs. 1.9. Analyze the integration of biotechnology and drug manufacturing with advancements in artificial intelligence (AI), machine learning, and data analytics to accelerate drug discovery and improve production efficiency.
 2.1. Evaluate the potential of biotechnology in developing targeted therapies for genetic diseases, focusing on gene therapy and gene editing technologies such as CRISPR, which allow for the correction of genetic mutations at the molecular level. 2.2. Analyze the use of biotechnology in cancer treatment, including the development of monoclonal antibodies, immune checkpoint inhibitors, and CAR-T cell therapies that analyze the bady's immune system to target
 and destroy cancer cells. 2.3. Investigate the application of biotechnology in regenerative medicine, including stem cell therapies and tissue engineering, which offer potential solutions for repairing or replacing damaged tissues and organs. 2.4 Assess the role of biotechnology in developing
 personalized medicine, where treatments are tailored based on genetic, environmental, and lifestyle factors, improving the effectiveness and reducing the side effects of therapies. 2.5. Explore the development of biologics, such as therapeutic proteins, vaccines, and RNA-based drugs, to treat infectious diseases and autoimmune conditions by targeting specific biological pathways. 2.6. Analyze the potential for biotechnology to

therapies, and alternative antimicrobial
strategies.
2.7. Evaluate the role of biotechnology in central
nervous system (CNS) diseases, including
neurodegenerative disorders such as
Alzheimer's and Parkinson's disease, through
the development of gene therapies, protein-
based treatments, and neuroprotective drugs.
2.8. Investigate the application of biotechnology in
rare and orphan diseases, where
biopharmaceuticals and gene therapies
provide new treatment options for conditions
that have historically had limited or no
effective treatments.
2.9. Explore the integration of biotechnology with
advanced technologies such as
nanotechnology, which can enhance drug
delivery systems, making therapies more
effective by targeting specific cells or tissues
with minimal side effects.

BE0002-21: Biotechnology in Agriculture and Food Production

The aim of this study unit is to provide students with an in-depth understanding of the role of biotechnology in enhancing agricultural practices and food production systems. The unit focuses on analyzing the benefits and challenges of genetically modified crops and animal products, enabling students to critically assess the impact of biotechnological innovations on food security, sustainability, and global agricultural practices.

Learning Outcome:	Assessment Criteria:
1. Evaluate the role of biotechnology in improving	1.1. Analyze the role of biotechnology in
agricultural practices and food production systems.	enhancing crop yields through genetic modification and precision breeding, allowing for the development of genetically engineered plants that are resistant to pests, diseases, and environmental stresses such as drought and extreme temporatures
	 Evaluate the use of biotechnology in creating crops with improved nutritional profiles, such as genetically modified (GM) crops enriched with vitamins, minerals, or essential amino acids, addressing malnutrition and food security issues.
	 Investigate the application of biotechnology in developing biofortified crops, such as Golden Rice, which aims to combat micronutrient deficiencies, particularly in developing countries.
	1.4. Assess the potential of biotechnology in reducing the environmental impact of agriculture through the development of genetically modified crops that require fewer chemical inputs, such as pesticides and fertilizers, thus promoting sustainable farming practices.
	1.5. Explore the use of biotechnology in livestock breeding and health, including the development of genetically modified animals with improved disease resistance, faster growth rates, and enhanced nutritional content.
	1.6. Evaluate the role of biotechnology in improving food safety, such as the development of genetically modified organisms (GMOs) with increased resistance to spoilage, contamination, or pathogens,

	 contributing to longer shelf life and safer food products. 1.7. Investigate biotechnological innovations in food preservation and processing, such as the use of enzymes and microorganisms in food fermentation, which enhance the shelf life, taste, and nutritional value of food products. 1.8. Analyze the potential for biotechnology to address global food waste by developing crops with longer shelf lives and more efficient storage solutions, helping reduce losses in the food supply chain. 1.9. Explore the use of biotechnological methods for sustainable pest control, such as the use of biological pesticides and engineered microbes to control harmful pests and reduce reliance
	on chemical pesticides, supporting integrated pest management systems.
2. Analyze the benefits and challenges of genetically modified crops and animal products.	 2.1. Evaluate the benefits of genetically modified (GM) crops in improving agricultural productivity by enhancing traits such as pest resistance, disease resistance, drought tolerance, and faster growth rates, leading to higher yields and more reliable food production. 2.2. Assess the potential for GM crops to reduce the need for chemical inputs like pesticides and herbicides, contributing to more sustainable agricultural practices and reduced environmental impact through lower chemical residue in the environment and food. 2.3. Analyze the role of GM crops in addressing global food security by developing crops with improved nutritional content (e.g., Golden Rice), which can help combat malnutrition, especially in developing regions where nutrient deficiencies are prevalent. 2.4. Explore the advantages of genetically modified animals, such as faster growth rates, improved disease resistance, and higher productivity in livestock (e.g., GM salmon), potentially leading to more efficient food production and reduced strain on natural resources.

2.5. Examine the potential for GM livestock to enhance the nutritional value of animal products, such as milk and meat, by modifying the composition of fat, protein, or other nutrients to meet specific dietary needs.
2.6. Discuss the challenges of GM crops and animal products, including concerns over long-term health impacts, ecological consequences, and the potential for cross- contamination with non-GM crops, which can affect biodiversity and disrupt local ecosystems.
2.7. Analyze the ethical concerns surrounding GM animals, particularly in terms of animal welfare and the implications of genetic modifications on animal health and behavior.
2.8. Investigate the regulatory hurdles for GM crops and animals, including the complex approval processes, public skepticism, and the need for extensive safety testing before commercialization to address consumer concerns and ensure public trust.
2.9. Consider the economic challenges, such as the cost of developing GM crops and animal products, intellectual property issues, and the market dynamics between GM and non-GM products, which may create conflicts among farmers, consumers, and industries.

BE0002-22: Biotechnology in Waste Management

The aim of this study unit is to provide students with a comprehensive understanding of the role of biotechnology in waste management, focusing on techniques such as bioremediation and waste-to-energy processes. The unit explores the environmental and economic benefits of biotechnology-based waste management solutions, preparing students to innovate and implement sustainable practices that address global waste challenges.

Learning Outcome:	Assessment Criteria:
1. Study the use of biotechnology in managing and	1.1. Analyze the role of biotechnology in
reducing waste, including bioremediation and	bioremediation, where microorganisms,
waste-to-energy processes.	plants, or enzymes are used to degrade or
	detoxify environmental pollutants such as
	heavy metals, pesticides, and organic
	compounds, offering an eco-friendly solution
	for cleaning contaminated sites.
	1.2. Evaluate the use of genetically engineered
	microorganisms in enhancing the efficiency of
	bioremediation processes, including the
	development of microbes that can break
	down more complex or hazardous substances,
	thereby expanding the range of pollutants
	that can be addressed.
	1.3. Investigate the application of biotechnology in
	waste treatment, such as the use of microbial
	fuel cells and other biotechnological methods
	to treat industrial and municipal wastewater,
	converting harmful substances into less toxic
	forms or valuable byproducts.
	1.4. Examine the potential of biotechnology in
	waste-to-energy processes, including the use
	of microorganisms to convert organic waste
	materials into blogas (methane) through
	anaerobic digestion, providing a renewable
	source of energy while reducing landili
	1.5 Accord the use of algae and other
	1.3. Assess the use of algae and other
	hiomass from waste production, where
	converted into hindiesel ethanol or other
	forms of renewable energy contributing to
	the reduction of fossil fuel dependence
	1.6. Investigate the role of hiotechnology in
	recycling waste materials, such as the use of
	bacteria or fungi to degrade plastic waste or

	convert agricultural byproducts into biodegradable alternatives, promoting circular economy models. 1.7. Explore the potential for biotechnological processes in reducing food waste by employing microbial fermentation techniques
	to convert food scraps into value-added products such as animal feed, biofuels, or compost.
	1.8. Analyze the challenges in scaling up bioremediation and waste-to-energy processes, including issues related to the consistency of microbial performance, cost- effectiveness, and regulatory approval for large-scale deployment
	 Examine the integration of biotechnology with other waste management technologies, such as combining bioremediation with traditional mechanical or chemical methods to achieve more comprehensive waste reduction strategies.
2. Understand the environmental and economic	2.1. Evaluate the environmental benefits of
benefits of biotechnology-based waste	biotechnology-based waste management
management solutions.	pollutants in soil, air, and water through bioremediation, contributing to healthier ecosystems and less contamination of natural resources.
	2.2. Analyze how biotechnology-based waste management methods help in reducing landfill waste by converting organic waste into valuable products such as biogas, compost, and biofuels, thereby decreasing the volume of waste that ends up in landfills and reducing grouphouse gas omissions
	 2.3. Investigate the economic benefits of biotechnology-based waste management, including cost savings for industries and municipalities through the implementation of waste-to-energy processes, which can lower waste disposal costs and provide an alternative energy source.
	2.4. Assess the role of biotechnology in generating

of biofuels, biodegradable plastics, or bio-
based chemicals from waste materials,
contributing to the growth of a circular
economy and promoting sustainable
industrial practices.
2.5. Examine the potential for biotechnology to
create green jobs in the bioremediation,
waste-to-energy, and bio-based product
industries, fostering economic development
while addressing environmental challenges.
2.6. Discuss the long-term cost efficiency of
biotechnology-based waste management
solutions, as the use of microorganisms or
enzymes in waste treatment may reduce the
need for costly chemical treatments,
equipment, and labor in traditional waste
management systems.
2.7. Explore the ability of biotechnology to
enhance waste management in developing
regions, where it can provide low-cost, locally
accessible solutions to waste disposal and
environmental cleanup, improving public
health and reducing the economic burden of
pollution.
2.8. Consider how biotechnology-based waste
management practices support sustainability
goals by reducing reliance on non-renewable
resources, lowering carbon footprints, and
encouraging resource recovery and waste
minimization.
2.9. Assess the potential for biotechnology to
integrate with existing waste management
intrastructure, creating synergies with
offectiveness of weste reduction receive
enectiveness of waste reduction, recycling,
and disposal systems.

BE0002-23 Research and Development in Biotechnology

The aim of this study unit is to provide students with a comprehensive understanding of the research and development process in biotechnology, covering all stages from concept to commercialization. The unit focuses on developing practical skills in planning, executing, and evaluating biotechnological research projects, equipping students with the tools necessary to contribute effectively to innovative advancements in biotechnology.

Learning Outcome:	Assessment Criteria:
1. Gain insight into the research and development	1.1. Understand the stages of biotechnology
process in biotechnology, from concept to	research and development (R&D), beginning
commercialization.	ar opportunity, followed by the formulation
	of a research hypothesis and experimental
	design to address the issue
	1.2 Analyze the role of early-stage research in
	biotechnology, including basic science.
	discovery research, and proof-of-concept
	studies that provide the foundation for
	further development and commercialization.
	1.3. Explore the development of prototypes and
	preclinical testing, focusing on laboratory
	experiments and small-scale studies that
	evaluate the feasibility, safety, and efficacy of
	biotechnology products, such as new drugs,
	therapies, or agricultural innovations.
	1.4. Investigate the role of intellectual property
	(IP) In the R&D process, including patenting
	create commercial value while managing
	risks and ensuring competitive advantage
	1.5. Examine the stages of product development,
	from lab-scale production to scaling up
	processes for large-scale manufacturing,
	addressing challenges related to bioprocess
	optimization, cost-effectiveness, and
	regulatory compliance.
	1.6. Assess the importance of clinical trials,
	regulatory approvals, and safety assessments
	in the biotechnology commercialization
	process, ensuring that products meet the
	quality as established by regulatory bodies
	like the FDA or EMA.
	1.7. Explore the role of interdisciplinary

	collaboration in biotechnology R&D. including
	partnerships between scientists, engineers,
	business experts, and regulatory authorities
	to drive innovation from laboratory
	discoveries to market-ready products.
	1.8. Investigate the commercialization strategies
	analysis pricing distribution shappels and
	marketing to ensure successful product
	untake and adoption in target markets
	1.9 Understand the financial and logistical aspects
	of hiotechnology R&D such as funding
	sources (e.g., venture capital, government
	grants), budgeting, and project management.
	as well as the challenges associated with
	securing investment and achieving
	profitability.
2. Develop skills in planning, executing, and	2.1. Gain proficiency in defining clear research
evaluating biotechnological research projects.	objectives and formulating research questions
	that are specific, measurable, achievable,
	relevant, and time-bound (SMART), ensuring a
	structured approach to biotechnological
	research projects.
	2.2. Develop skills in designing and planning
	experiments, including selecting appropriate
	investigate specific hiotechnological
	problems, ensuring that the design aligns with
	the project's objectives and available
	resources.
	2.3. Learn to identify and mitigate potential risks
	and challenges in research projects, including
	technical, ethical, regulatory, and safety
	issues, and develop strategies for managing
	these risks throughout the project's lifecycle.
	2.4. Ennance project management skills, including
	and coordination of team members, onsuring
	the efficient execution of research projects
	within established timelines and budgets.
	2.5. Understand the principles of data collection.
	analysis, and interpretation in biotechnology,
	applying statistical methods and
	computational tools to ensure the accuracy,

reliability, and validity of research findings.
2.6. Develop the ability to critically evaluate
experimental results and draw valid
conclusions, considering the limitations and
potential sources of error in data collection
and analysis.
2.7. Learn to write comprehensive research
reports and scientific papers, effectively
communicating methodologies, findings, and
implications of the research to diverse
audiences, including academic, industrial, and
regulatory stakeholders.
2.8. Gain experience in presenting research
findings, both orally and in writing, to
different audiences, including internal teams,
external collaborators, funding bodies, and
regulatory authorities, ensuring that results
are communicated clearly and effectively.
2.9. Understand the ethical considerations in
planning and executing biotechnology
research, including ensuring compliance with
regulatory guidelines, obtaining informed
consent where applicable, and addressing
environmental and safety concerns.

BE0002-24: Professional Practice and Career Development in Biotechnology

The aim of this study unit is to equip students with the skills and knowledge necessary for professional practice in the biotechnology sector. The unit focuses on career planning, communication, and leadership skills, while also emphasizing the ethical responsibilities and industry standards that govern the biotechnology profession. This prepares students to navigate their careers effectively and contribute to the advancement of biotechnology in a professional and responsible manner.

Learning Outcome:	Assessment Criteria:
Learning Outcome: 1. Prepare for professional practice in the biotechnology sector by developing career planning, communication, and leadership skills.	 Assessment Criteria: 1.1. Develop career planning skills by identifying career goals, evaluating potential career paths in the biotechnology sector, and creating a structured plan for achieving professional growth, including further education, certifications, and industry experience. 1.2. Build an understanding of key roles and career opportunities in biotechnology, including
	 including positions in research and development, regulatory affairs, quality control, bioinformatics, and biomanufacturing, to guide decision-making in career development. 1.3. Enhance professional communication skills, including writing technical reports, research papers, and grant proposals, as well as delivering clear, concise, and effective presentations to diverse audiences, such as stakeholders, clients, and colleagues. 1.4. Improve interpersonal communication skills by developing active listening, negotiation, and conflict resolution abilities, essential for collaborating effectively in interdisciplinary.
	 teams and managing professional relationships. 1.5. Cultivate leadership skills by learning how to motivate and guide teams, make strategic decisions, manage projects, and navigate challenges in a fast-paced, innovation-driven industry, fostering a collaborative and high-performance work environment. 1.6. Develop networking strategies to build relationships with industry professionals, academic researchers, and business leaders, attending industry conferences, joining

	professional organizations, and participating
	in collaborative projects to expand career
	opportunities
	1.7 Cain experience in mentaring and coaching
	1.7. Gain experience in mentoring and coaching
	others, developing skills in providing
	guidance, feedback, and support to junior
	colleagues or students, helping to build a
	productive and inclusive work culture in
	biotechnology settings.
	1.8. Understand the importance of ethical
	leadership and professionalism in
	biotechnology, including the responsibility to
	uphold integrity, confidentiality, and
	compliance with industry standards and
	regulations in all aspects of professional
	practice
	1.9 Learn to navigate the challenges of career
	advancement in histochnology by
	understanding industry trends emerging
	tochnologies, and global issues that may
	import the costor and edenting cores
	impact the sector, and adapting career
	strategies accordingly.
2 Understand the othical responsibilities and	2.1 Understand the ethical principles that govern
2. Onderstand the ethical responsibilities and	z.z. onderstand the ethical principles that govern
industry standards in the biotechnology	biotechnology practice, including honesty,
industry standards in the biotechnology profession.	biotechnology practice, including honesty, integrity, accountability, and respect for
industry standards in the biotechnology profession.	biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and
industry standards in the biotechnology profession.	biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of
industry standards in the biotechnology profession.	biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct.
industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Becognize the importance of informed
industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology particularly in
industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials genetic testing and the use of
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the ricke honefits and
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research.
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and medifications are fully to the thick back and the second s
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to the biological particular in the second second
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to individuals, communities, or ecosystems, and the use of an anticipants of the state.
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to individuals, communities, or ecosystems, and that they are used responsibly and for the
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to individuals, communities, or ecosystems, and that they are used responsibly and for the public good.
2. Understand the ethical responsibilities and industry standards in the biotechnology profession.	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to individuals, communities, or ecosystems, and that they are used responsibly and for the public good. 2.4. Familiarize with the legal and regulatory
 Onderstand the ethical responsibilities and industry standards in the biotechnology profession. 	 biotechnology practice, including honesty, integrity, accountability, and respect for human rights, ensuring that research and applications uphold the highest standards of ethical conduct. 2.2. Recognize the importance of informed consent in biotechnology, particularly in human trials, genetic testing, and the use of biological materials, ensuring that participants are fully aware of the risks, benefits, and purpose of research. 2.3. Gain awareness of the ethical considerations surrounding genetic engineering and modifications, ensuring that biotechnological interventions do not cause harm to individuals, communities, or ecosystems, and that they are used responsibly and for the public good. 2.4. Familiarize with the legal and regulatory frameworks that govern biotechnology,

laws (e.g., the Biotechnology Regulatory
Authority of India or the U.S. FDA), ensuring
compliance with ethical standards, safety
protocols, and environmental protection.
2.5. Develop an understanding of biosecurity and
biosafety standards, including the safe
handling of biological materials, hazardous
substances, and genetically modified
organisms (GMOs), to prevent accidents,
contamination, and misuse of
biotechnological research.
2.6. Understand the principles of environmental
responsibility in biotechnology, ensuring that
biotechnological processes are sustainable,
reduce waste, and minimize environmental
impacts, promoting ecological balance and
resource conservation.
2.7. Explore the ethical implications of patenting
biotechnological innovations, considering the
balance between protecting intellectual
property and ensuring equitable access to
and agriculture
2.8 Percentize the social and economic
implications of biotechnology including the
notential for disparities in access to
biotechnology benefits and the ethical
responsibility of ensuring that advances serve
the broader public interest and contribute to
societal well-being.
2.9. Develop awareness of the ethical challenges
in biotechnology-related fields, such as
cloning, gene editing, and synthetic biology,
and the need to make decisions that consider
long-term societal and environmental
impacts.

ICTQual AB

Yew Tree Avenue, Dagenham,

London East, United Kingdom RM10 7FN

+44 744 139 8083

Support@ictqualab.co.uk | www.ictqualab.co.uk

Visit Official Web page

