



# Level 4 Diploma in Mechanical Engineering 120 Credits – One Year

Website www.ictqualab.co.uk

Email: Support@ictqualab.co.uk



# **ICTQual AB**

# Level 4 Diploma in Mechanical Engineering

## 120 Credits – One Year

#### Contents

| About ICTQual AB        | 2 |
|-------------------------|---|
| Course Overview         | 2 |
| Certification Framework | 3 |
| Entry Requirements      | 3 |
| Qualification Structure | 3 |
| Centre Requirements     | 4 |
| Support for Candidates  | 6 |
| Assessment              | 6 |
| Unit Descriptors        | 7 |



## **Qualification Specifications about**

# ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year

#### About ICTQual AB

ICTQual AB UK Ltd. is a distinguished awarding body based in the United Kingdom, dedicated to fostering excellence in education, training, and skills development. Committed to global standards, ICTQual AB provides internationally recognized qualifications that empower individuals and organizations to thrive in an increasingly competitive world. Their offerings span diverse industries, including technical fields, health and safety, management, and more, ensuring relevance and adaptability to modern workforce needs.

The organization prides itself on delivering high-quality educational solutions through a network of Approved Training Centres worldwide. Their robust curriculum and innovative teaching methodologies are designed to equip learners with practical knowledge and skills for personal and professional growth. With a mission to inspire lifelong learning and drive positive change, ICTQual AB continuously evolves its programs to stay ahead of industry trends and technological advancements.

ICTQual AB's vision is to set benchmarks for educational excellence while promoting inclusivity and integrity. Their unwavering focus on quality and accessibility makes them a trusted partner in shaping future-ready professionals and advancing societal progress globally.

#### **Course Overview**

The ICTQual Level 4 Diploma in Mechanical Engineering is a foundational qualification designed to prepare learners for careers in the engineering sector. This course provides a strong introduction to essential concepts such as mechanical systems, materials technology, and engineering design. With an emphasis on practical skills and industry-relevant knowledge, it equips students with the competencies required to meet the demands of modern engineering roles. The program also introduces fundamental engineering mathematics and physics, ensuring learners are well-prepared to tackle technical challenges in a professional environment.

This diploma is an excellent pathway for individuals seeking entry-level roles in mechanical engineering or wishing to progress to advanced qualifications. Aligned with industry standards, the course offers a balance of theoretical knowledge and hands-on experience, making it particularly suited to the needs of the engineering sector. Graduates will gain the skills to pursue opportunities in manufacturing, maintenance, and design, contributing to the development of innovative engineering solutions.



#### **Certification Framework**

| Qualification title          | Level 4 Diploma in Mechanical Engineering 120 Credits – One Year                                                                                                                                                                                                                            |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course ID                    | ME0003                                                                                                                                                                                                                                                                                      |  |
| Qualification Credits        | 120 Credits                                                                                                                                                                                                                                                                                 |  |
| Course Duration              | One Year                                                                                                                                                                                                                                                                                    |  |
| Grading Type                 | Pass / Fail                                                                                                                                                                                                                                                                                 |  |
| <b>Competency Evaluation</b> | Coursework / Assignments / Verifiable Experience                                                                                                                                                                                                                                            |  |
| Assessment                   | The assessment and verification process for ICTQual qualifications involves two key stages:                                                                                                                                                                                                 |  |
|                              | Internal Assessment and Verification:                                                                                                                                                                                                                                                       |  |
|                              | <ul> <li>✓ Conducted by the staff at the Approved Training Centre (ATC). Ensures learners meet the required standards through continuous assessments.</li> <li>✓ Internal quality assurance (IQA) is carried out by the centre's IQA staff to validate the assessment processes.</li> </ul> |  |
|                              | External Quality Assurance:                                                                                                                                                                                                                                                                 |  |
|                              | <ul> <li>✓ Managed by ICTQual AB verifiers, who periodically review the centre's assessment and IQA processes.</li> <li>✓ Verifies that assessments are conducted to the required standards and ensures consistency across centres.</li> </ul>                                              |  |

### **Entry Requirements**

To enroll in the ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year, candidates must meet the following entry requirements:

- ✓ A minimum of a Level 3 qualification (e.g., A-Levels, NVQ Level 3, or equivalent). A background in mathematics, physics, or a related field is highly recommended as the course involves technical engineering concepts and calculations.
- ✓ Minimum age of 16 years to enroll in the course.
- ✓ Proficiency in English, as the program involves technical vocabulary, written assignments, and effective communication in mechanical engineering contexts.
- ✓ Basic computer skills, which are necessary for completing assignments, managing projects, and using engineering software and tools for design, analysis, and simulation.
- ✓ While not mandatory, prior experience or exposure to mechanical engineering, technology, or related technical fields can provide a strong foundation for understanding course material and enhancing practical learning outcomes.

### Qualification Structure

This qualification comprises 12 mandatory units, totaling 120 credits. Candidates must successfully complete all mandatory units to achieve the qualification.

www.ictqualab.co.uk



| Mandatory Units |                                                   |         |
|-----------------|---------------------------------------------------|---------|
| Unit Ref#       | Unit Title                                        | Credits |
| ME0003-1        | Engineering Mathematics                           | 10      |
| ME0003-2        | Mechanical Design Principles                      | 10      |
| ME0003-3        | Thermodynamics                                    | 10      |
| ME0003-4        | Fluid Mechanics                                   | 10      |
| ME0003-5        | Materials Science                                 | 10      |
| ME0003-6        | Manufacturing Processes                           | 10      |
| ME0003-7        | Engineering Mechanics                             | 10      |
| ME0003-8        | Mechanical Systems and Control                    | 10      |
| ME0003-9        | Strength of Materials                             | 10      |
| ME0003-10       | Project Management in Engineering                 | 10      |
| ME0003-11       | Computational Fluid Dynamics (CFD) and Simulation | 10      |
| ME0003-12       | Sustainability and Environmental Engineering      | 10      |

#### **Centre Requirements**

Even if a centre is already registered with ICTQual AB, it must meet specific requirements to deliver the ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year. These standards ensure the quality and consistency of training, assessment, and learner support.

#### 1. Approval to Deliver the Qualification

- ✓ Centres must obtain formal approval from ICTQual AB to deliver this specific qualification, even if they are already registered.
- ✓ The approval process includes a review of resources, staff qualifications, and policies relevant to the program.

#### 2. Qualified Staff

- ✓ Tutors: Must have relevant qualifications in mechanical engineering or construction at Level 5 or higher, alongside teaching/training experience.
- ✓ Assessors: Must hold a recognized assessor qualification and demonstrate expertise in Mechanical Engineering
- ✓ Internal Quality Assurers (IQAs): Must be appropriately qualified and experienced to monitor the quality of assessments.

#### **3. Learning Facilities**

Centres must have access to appropriate learning facilities, which include:

- ✓ Classrooms: Modern, well-equipped spaces with advanced multimedia tools to deliver engaging theoretical instruction in mechanical engineering concepts and design principles.
- ✓ Practical Areas: Hands-on training areas featuring cutting-edge tools, machinery, and equipment such as lathes, milling machines, welding stations, and 3D printers for real-world practice and assessments.

#### www.ictqualab.co.uk



✓ **Technology Access:** High-performance computers with industry-standard software (e.g., CAD, CAM, FEA) and reliable internet connectivity to support technical design, analysis, and project wor.

#### 4. Health and Safety Compliance

- ✓ Centres must ensure that practical training environments comply with relevant health and safety regulations.
- ✓ Risk assessments must be conducted regularly to maintain a safe learning environment.

#### **5. Resource Requirements**

- ✓ Learning Materials: Approved course manuals, textbooks, and study guides aligned with the curriculum.
- ✓ Assessment Tools: Templates, guidelines, and resources for conducting and recording assessments.
- ✓ E-Learning Systems: If offering online or hybrid learning, centres must provide a robust Learning Management System (LMS) to facilitate remote delivery.

#### 6. Assessment and Quality Assurance

- ✓ Centres must adhere to ICTQual's assessment standards, ensuring that all assessments are fair, valid, and reliable.
- ✓ Internal quality assurance (IQA) processes must be in place to monitor assessments and provide feedback to assessors.
- ✓ External verification visits from ICTQual will ensure compliance with awarding body standards.

#### 7. Learner Support

- ✓ Centres must provide learners with access to guidance and support throughout the program, including:
- ✓ Academic support for coursework.
- ✓ Career guidance for future progression.
- ✓ Additional support for learners with specific needs (e.g., disabilities or language barriers).

#### 8. Policies and Procedures

Centres must maintain and implement the following policies, as required by ICTQual:

- ✓ Equal Opportunities Policy.
- ✓ Health and Safety Policy.
- ✓ Safeguarding Policies and Procedures.
- ✓ Complaints and Appeals Procedure.
- ✓ Data Protection and Confidentiality Policy.

#### 9. Regular Reporting to ICTQual

- ✓ Centres must provide regular updates to ICTQual AB on learner enrollment, progress, and completion rates.
- ✓ Centres are required to maintain records of assessments and learner achievements for external auditing purposes.



#### **Support for Candidates**

Centres should ensure that materials developed to support candidates:

- ✓ Facilitate tracking of achievements as candidates progress through the learning outcomes and assessment criteria.
- ✓ Include information on how and where ICTQual's policies and procedures can be accessed.
- ✓ Provide mechanisms for Internal and External Quality Assurance staff to verify and authenticate evidence effectively.

This approach ensures transparency, supports candidates' learning journeys, and upholds quality assurance standards.

#### Assessment

This qualification is competence-based, requiring candidates to demonstrate proficiency as defined in the qualification units. The assessment evaluates the candidate's skills, knowledge, and understanding against the set standards. Key details include:

#### 1. Assessment Process:

- ✓ Must be conducted by an experienced and qualified assessor.
- ✓ Candidates compile a portfolio of evidence that satisfies all learning outcomes and assessment criteria for each unit.

#### 2. Types of Evidence:

- ✓ Observation reports by the assessor.
- ✓ Assignments, projects, or reports.
- ✓ Professional discussions.
- ✓ Witness testimonies.
- ✓ Candidate-produced work.
- ✓ Worksheets.
- ✓ Records of oral and written questioning.
- ✓ Recognition of Prior Learning (RPL).

#### 3. Learning Outcomes and Assessment Criteria:

- ✓ Learning Outcomes: Define what candidates should know, understand, or accomplish upon completing the unit.
- ✓ Assessment Criteria: Detail the standards candidates must meet to demonstrate that the learning outcomes have been achieved.

This framework ensures rigorous and consistent evaluation of candidates' competence in line with the qualification's objectives.



### **Unit Descriptors**

#### ME0003 - 1. Engineering Mathematics

The aim of this study unit is to equip learners with a comprehensive understanding of fundamental mathematical principles, including algebra, calculus, trigonometry, and statistics, and their practical application to engineering problems. This unit is designed to develop proficiency in using advanced mathematical methods to analyze and solve mechanical engineering challenges, particularly in areas such as forces, motion, and material behavior. By the end of the unit, learners will be able to apply these mathematical techniques effectively in the design, analysis, and optimization of mechanical systems, ensuring competence in both theoretical and applied aspects of engineering mathematics.

| Learning Outcome:                                | Assessment Criteria:                                |
|--------------------------------------------------|-----------------------------------------------------|
| 1. Understand and apply fundamental              | 1.1. Apply algebraic techniques to solve equations, |
| mathematical principles, including algebra,      | manipulate expressions, and analyze                 |
| calculus, trigonometry, and statistics, to solve | relationships between variables in mechanical       |
| engineering problems.                            | engineering contexts, ensuring accurate             |
|                                                  | calculations and data interpretation.               |
|                                                  | 1.2. Use calculus to analyze and solve problems     |
|                                                  | involving rates of change, such as velocity,        |
|                                                  | acceleration, and forces in dynamic systems,        |
|                                                  | as well as to compute areas, volumes, and           |
|                                                  | other quantities relevant to mechanical             |
|                                                  | systems.                                            |
|                                                  | 1.3. Utilize trigonometry to analyze forces,        |
|                                                  | motions, and mechanical components,                 |
|                                                  | including calculating angles, distances, and        |
|                                                  | displacements in systems involving rotation or      |
|                                                  | oscillation.                                        |
|                                                  | 1.4. Apply statistical methods to interpret data,   |
|                                                  | assess variability, and make decisions based        |
|                                                  | on data analysis, including using probability       |
|                                                  | distributions and nerformance evaluation            |
|                                                  | 1.5 Integrate mathematical models with              |
|                                                  | engineering concents to predict the behavior        |
|                                                  | of mechanical systems ensuring that                 |
|                                                  | solutions are not only mathematically correct       |
|                                                  | but also practically applicable.                    |
|                                                  | 1.6. Solve complex mechanical problems by           |
|                                                  | breaking them down into smaller.                    |
|                                                  | manageable parts using appropriate                  |
|                                                  | mathematical methods, such as solving linear        |
|                                                  | equations for static systems or applying            |
|                                                  | integration for dynamic motion.                     |



|                                                                                                                                                                               | <ul> <li>1.7. Employ vector mathematics to analyze forces, displacements, and velocities in multi-dimensional systems, ensuring a clear understanding of mechanical behavior in both two and three-dimensional spaces.</li> <li>1.8. Understand and apply numerical methods and approximation techniques for solving engineering problems that cannot be solved analytically, such as using finite element analysis (FEA) for complex structural analysis.</li> <li>1.9. Interpret and validate the results of mathematical calculations in the context of mechanical engineering applications, ensuring that the solutions meet design requirements and safety standards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Develop proficiency in using mathematical<br/>methods to analyze mechanical engineering<br/>scenarios, such as forces, motion, and material<br/>behavior.</li> </ol> | <ul> <li>2.1. Use vector analysis and coordinate systems to calculate forces, moments, and displacements in mechanical systems, ensuring accurate assessments of static and dynamic forces.</li> <li>2.2. Apply Newton's laws of motion and principles of kinematics to analyze the movement of mechanical components, determining velocity, acceleration, and position in various engineering scenarios.</li> <li>2.3. Use differential equations to model and analyze dynamic systems, including the behavior of mechanical systems under varying loads, vibrations, and oscillations.</li> <li>2.4. Apply principles of material mechanics, including stress-strain relationships and elastic/plastic deformation, to analyze the behavior of materials under mechanical loads using mathematical models.</li> <li>2.5. Use the concepts of energy and work, including potential and kinetic energy, to analyze and solve mechanical systems.</li> <li>2.6. Employ mathematical tools like integration and differentiation to analyze continuous changes in mechanical systems, such as fluid flow, heat transfer, or rotational motion.</li> <li>2.7. Use matrix methods and linear algebra to solve systems of equations for analyzing</li> </ul> |



|                                                                                       | <ul> <li>forces in statically indeterminate structures or complex mechanical systems.</li> <li>2.8. Apply statistical methods to assess the variability of mechanical properties, conduct reliability analysis, and interpret experimental data for performance evaluation and optimization.</li> <li>2.9. Integrate calculus-based models and simulation software (e.g., FEA, CFD) to simulate mechanical behaviors, such as stress distributions, temperature gradients, and fluid dynamics, in engineering design and analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Apply mathematical techniques in the design<br>and analysis of mechanical systems. | <ul> <li>3.1. Use algebra and calculus to derive and solve equations that describe mechanical systems, such as motion equations for moving parts, force equations for static and dynamic structures, and energy equations for thermodynamic systems.</li> <li>3.2. Apply principles of statics and dynamics, using mathematical models to determine forces, moments, and equilibrium conditions in mechanical systems, ensuring accurate designs and safe operation.</li> <li>3.3. Employ trigonometric methods to calculate angles, displacements, and rotational motion in mechanisms like gears, cams, and linkages, ensuring precise functionality in mechanical systems.</li> <li>3.4. Use differential equations to model and analyze the dynamic behavior of mechanical systems, such as vibrations, oscillations, and thermal expansion, predicting system performance under varying conditions.</li> <li>3.5. Apply numerical methods to solve complex, real-world mechanical problems where analytical solutions are not possible, such as finite element analysis (FEA) for stress analysis and computational fluid dynamics (CFD) for fluid flow simulations.</li> <li>3.6. Integrate statistical analysis into the design process to assess material properties, failure rates, and reliability, ensuring that designs meet safety and performance standards</li> </ul> |



| under various conditions.                          |
|----------------------------------------------------|
| 3.7. Utilize optimization techniques, including    |
| linear programming and numerical                   |
| optimization methods, to enhance design            |
| parameters such as material selection, cost,       |
| and performance efficiency.                        |
| 3.8. Apply matrix operations and linear algebra in |
| structural analysis, such as solving systems of    |
| equations for load distribution and                |
| deformation in trusses, beams, and frames.         |
| 3.9. Use graphing and data analysis tools to       |
| visualize and interpret results from               |
| mechanical simulations, experiments, and           |
| design iterations, making data-driven              |
| decisions to improve system performance.           |
|                                                    |



#### ME0003 - 2. Mechanical Design Principles

The aim of this study unit is to provide learners with a thorough understanding of mechanical design principles, focusing on critical aspects such as material selection, stress analysis, and component design. Learners will gain hands-on experience in using Computer-Aided Design (CAD) software to create and modify engineering drawings and models, enabling them to apply engineering design principles effectively in solving real-world mechanical engineering challenges. This unit is designed to equip learners with the essential skills required to excel in mechanical design within an international engineering context,

| Learning Outcome:                               | Assessment Criteria:                             |
|-------------------------------------------------|--------------------------------------------------|
| 1. Demonstrate a comprehensive understanding of | 1.1. Understand the entire mechanical design     |
| the mechanical design process, including        | process, from conceptualization and              |
| material selection, stress analysis, and        | requirements gathering to final product          |
| component design.                               | testing and validation, ensuring the design      |
|                                                 | meets functional, safety, and regulatory         |
|                                                 | standards.                                       |
|                                                 | 1.2. Apply knowledge of material properties,     |
|                                                 | including strength, ductility, hardness, and     |
|                                                 | thermal conductivity, to select appropriate      |
|                                                 | materials that meet the performance and          |
|                                                 | durability requirements of the system.           |
|                                                 | 1.3. Perform stress analysis using principles of |
|                                                 | mechanics of materials to evaluate the           |
|                                                 | Internal forces, deformations, and stresses      |
|                                                 | conditions onsuring the design is cafe and       |
|                                                 | efficient                                        |
|                                                 | 1.4 Utilize advanced techniques such as finite   |
|                                                 | element analysis (FEA) to simulate and assess    |
|                                                 | stress distribution, deformation, and failure    |
|                                                 | modes in complex geometries and loading          |
|                                                 | conditions.                                      |
|                                                 | 1.5. Design mechanical components with           |
|                                                 | consideration for manufacturability, ease of     |
|                                                 | assembly, cost-effectiveness, and material       |
|                                                 | efficiency, while ensuring that the component    |
|                                                 | performs reliably under expected operating       |
|                                                 | conditions.                                      |
|                                                 | 1.6. Incorporate design for sustainability by    |
|                                                 | considering environmental impact, resource       |
|                                                 | conservation, and recyclability of materials in  |
|                                                 | the selection and design process.                |
|                                                 | 1.7. Evaluate failure modes and incorporate      |



|                                                                                                                            | <ul> <li>protection mechanisms to ensure the reliability and longevity of the designed components and systems.</li> <li>1.8. Use iterative design approaches, refining and optimizing designs through prototyping, testing, and feedback to achieve optimal performance and compliance with all necessary specifications.</li> <li>1.9. Ensure compliance with industry standards, regulations, and codes throughout the design process to meet quality, safety, and environmental requirements.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Use Computer-Aided Design (CAD) software to<br/>create and modify engineering drawings and<br/>models.</li> </ol> | <ul> <li>2.1. Proficiently use CAD software (such as AutoCAD, SolidWorks, or CATIA) to create detailed 2D engineering drawings, including orthographic projections, section views, and detailed dimensions, ensuring clarity and precision for manufacturing and assembly.</li> <li>2.2. Develop 3D models of mechanical components and systems, using parametric modeling techniques to define and manipulate geometry, material properties, and design constraints.</li> <li>2.3. Use CAD tools to perform assembly modeling, ensuring that components are accurately positioned and fit together as intended, while checking for interferences and proper clearances.</li> <li>2.4. Apply advanced CAD features such as lofting, filleting, and sweeping to create complex geometry, and use simulation tools to assess how designs will behave under real-world conditions.</li> <li>2.5. Utilize CAD software's visualization tools to generate renderings and animations, providing clear presentations of mechanical designs and improving communication with stakeholders.</li> <li>2.6. Modify existing designs by importing and adapting previous CAD files, ensuring design updates meet current specifications while maintaining compatibility with other system components.</li> <li>2.7. Integrate CAD models with other engineering</li> </ul> |



|                                                                                                 | <ul> <li>tools, such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD), to validate the design's performance under various physical conditions.</li> <li>2.8. Ensure that CAD models and drawings adhere to industry standards, such as ISO or ASME, including proper use of dimensioning, tolerancing, and symbols.</li> <li>2.9. Collaborate effectively with team members using CAD software's version control, markup, and sharing features to ensure efficient communication and the seamless integration of modifications.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Apply engineering design principles to solve real-<br>world mechanical engineering problems. | <ul> <li>3.1. Analyze and define the problem by gathering relevant data, understanding client requirements, and identifying constraints (such as cost, time, and regulatory requirements) to establish clear design objectives.</li> <li>3.2. Develop multiple design concepts and evaluate them based on technical feasibility, performance, cost-effectiveness, and manufacturability, ensuring alignment with the project's goals and constraints.</li> <li>3.3. Apply engineering principles such as mechanics, thermodynamics, fluid dynamics, and materials science to ensure the design meets functional requirements, operates efficiently, and is safe under expected operating conditions.</li> <li>3.4. Use tools like CAD software, simulation software (e.g., FEA, CFD), and analytical methods to model and test design concepts, ensuring they can withstand the real-world forces and conditions they will encounter.</li> <li>3.5. Integrate factors such as ease of assembly, maintainability, energy efficiency, and environmental impact into the design process, ensuring the final solution is sustainable and minimizes waste and resource consumption.</li> <li>3.6. Perform iterative testing and prototyping to</li> </ul> |
|                                                                                                 | 3.6. Perform iterative testing and prototyping to refine designs, identify potential issues, and validate that the design works as intended,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



| making improvements where necessary to               |
|------------------------------------------------------|
| meet performance and safety standards.               |
| 3.7. Collaborate with multidisciplinary teams (e.g., |
| manufacturing, electrical, quality control) to       |
| ensure the design can be seamlessly                  |
| integrated into the overall system or product.       |
| 3.8. Apply risk management techniques,               |
| conducting failure mode and effects analysis         |
| (FMEA) to anticipate and mitigate potential          |
| issues, ensuring the system is robust and            |
| reliable over its expected lifecycle.                |
| 3.9. Ensure compliance with relevant industry        |
| standards, codes, and regulations, including         |
| those related to safety, environmental               |
| sustainability, and performance, to guarantee        |
| the design is safe and compliant                     |
| the design is sale and compliant.                    |



#### ME0003 - 3. Thermodynamics

This unit aims to provide a comprehensive understanding of thermodynamics and its fundamental principles, including the laws of thermodynamics, energy transfer mechanisms, and the operation of heat engines. It is designed to equip learners with the skills to analyze and solve thermodynamic problems related to mechanical systems such as boilers, heat exchangers, and engines. The unit emphasizes the practical application of thermodynamic concepts to optimize the efficiency and performance of mechanical systems in alignment with international engineering standards.

| Learning Outcome:                         | Assessment Criteria:                              |
|-------------------------------------------|---------------------------------------------------|
| 1. Understand the core concepts of        | 1.1. Understand and apply the First Law of        |
| thermodynamics, including the laws of     | Thermodynamics (Conservation of Energy),          |
| thermodynamics, energy transfer, and heat | which states that energy cannot be created or     |
| engines.                                  | destroyed, only transferred or converted from     |
|                                           | one form to another, and use this principle to    |
|                                           | analyze energy systems.                           |
|                                           | 1.2. Comprehend the Second Law of                 |
|                                           | Thermodynamics, which introduces the              |
|                                           | concept of entropy, explaining that energy        |
|                                           | spontaneously tends to disperse and systems       |
|                                           | naturally evolve toward greater disorder,         |
|                                           | impacting the efficiency of energy transfer       |
|                                           | and conversion processes.                         |
|                                           | 1.3. Recognize the Third Law of Thermodynamics,   |
|                                           | which states that as the temperature of a         |
|                                           | system approaches absolute zero, the entropy      |
|                                           | of the system approaches a minimum, and           |
|                                           | apply this concept to the behavior of             |
|                                           | materials and systems at low temperatures.        |
|                                           | 1.4. Analyze energy transfer mechanisms,          |
|                                           | including conduction, convection, and             |
|                                           | radiation, and understand how heat is             |
|                                           | transferred between bodies and through            |
|                                           | different materials in various engineering        |
|                                           | applications.                                     |
|                                           | 1.5. Apply the concept of enthalpy and entropy to |
|                                           | understand energy exchanges in                    |
|                                           | thermodynamic processes, such as heating,         |
|                                           | properties to calculate system officiency and     |
|                                           | properties to calculate system enciency and       |
|                                           | 1.6 Understand the operation of heat orginal      |
|                                           | (e.g. steam internal compusition and gas          |
|                                           | turbines) and analyze how energy is               |



|                                                                                                                                                    | <ul> <li>converted from heat into mechanical work, using concepts like the Carnot cycle to evaluate engine efficiency.</li> <li>1.7. Analyze refrigeration cycles and heat pumps, understanding how mechanical work is used to transfer heat from cooler to warmer areas, and evaluate the efficiency of these systems in energy management.</li> <li>1.8. Apply the principles of thermodynamics to design and optimize systems such as power plants, HVAC systems, aircraft engines, and automobiles, ensuring efficient energy use and minimal waste.</li> <li>1.9. Understand the role of exergy in thermodynamics, which quantifies the usable energy in a system and helps evaluate the potential for energy conversion efficiency.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Analyze and solve thermodynamic problems<br/>related to mechanical systems, such as boilers,<br/>heat exchangers, and engines.</li> </ol> | <ul> <li>2.1. Identify the relevant thermodynamic processes and cycles (e.g., Rankine cycle for engines) involved in mechanical systems, and define the system boundaries for analysis.</li> <li>2.2. Apply the First Law of Thermodynamics to calculate energy balances in mechanical systems, ensuring that energy entering, leaving, and stored within the system is accounted for, and solve for unknown variables such as heat, work, and internal energy changes.</li> <li>2.3. Use the Second Law of Thermodynamics to assess system efficiency, identifying sources of irreversibility, entropy generation, and areas where energy loss could be minimized, particularly in heat exchangers and engines.</li> <li>2.4. For boilers, calculate the amount of heat required to convert water into steam at specific pressures and temperatures, and evaluate the system's thermal efficiency by comparing the actual energy output with the ideal energy output from the combustion process.</li> <li>2.5. In heat exchangers, apply principles of convection and conduction to solve for heat transfer rates.</li> </ul> |



|                                                   | effectiveness, using correlations for              |
|---------------------------------------------------|----------------------------------------------------|
|                                                   | convective heat transfer coefficients and          |
|                                                   | solving for the heat exchange area or heat         |
|                                                   | transfer fluid properties.                         |
|                                                   | 2.6. Use pressure-enthalpy diagrams (e.g., Mollier |
|                                                   | diagrams) to analyze the thermodynamic             |
|                                                   | states of the working fluids in boilers and heat   |
|                                                   | exchangers solving for specific enthalpy           |
|                                                   | entropy and temperature conditions at              |
|                                                   | various points in the system                       |
|                                                   | 2.7 Apply steady-flow energy equations to          |
|                                                   | 2.7. Apply steady-now energy equations to          |
|                                                   | and pumps calculating work input or output         |
|                                                   | heat transfer, and system officiency, ensuring     |
|                                                   | the proper application of icontropic relations     |
|                                                   | the proper application of isentropic relations     |
|                                                   | to estimate ideal performance.                     |
|                                                   | 2.8. Analyze internal compustion engines using     |
|                                                   | ideal and real cycle models, solving for           |
|                                                   | parameters such as compression ratio,              |
|                                                   | thermal efficiency, work output, and specific      |
|                                                   | fuel consumption, taking into account factors      |
|                                                   | such as heat losses, friction, and exhaust         |
|                                                   | gases.                                             |
|                                                   | 2.9. Evaluate system performance and optimize      |
|                                                   | the design of mechanical systems (e.g.,            |
|                                                   | improving efficiency, reducing heat loss, and      |
|                                                   | maximizing work output) using                      |
|                                                   | thermodynamic analysis and simulation              |
|                                                   | software tools (such as MATLAB, Engineering        |
|                                                   | Equation Solver).                                  |
| 3. Apply thermodynamic principles to optimize the | 3.1. Demonstrate a thorough understanding of the   |
| efficiency of mechanical systems.                 | fundamental thermodynamic laws and                 |
|                                                   | principles, including the first and second laws    |
|                                                   | of thermodynamics, and their application in        |
|                                                   | mechanical systems.                                |
|                                                   | 3.2. Apply the principles of energy conservation   |
|                                                   | and entropy to identify and assess potential       |
|                                                   | inefficiencies within mechanical systems.          |
|                                                   | 3.3. Utilize mathematical models and               |
|                                                   | thermodynamic equations to calculate system        |
|                                                   | performance, including heat transfer, work         |
|                                                   | output, and energy losses in various               |
|                                                   | mechanical processes.                              |
|                                                   | 3.4. Analyze the impact of working fluids,         |



| pressure, temperature, and volume on system<br>efficiency, ensuring accurate representation<br>of real-world conditions.                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.5. Design and simulate thermodynamic cycles<br>(e.g., Rankine, Brayton, or refrigeration<br>cycles) to evaluate their potential for<br>enhancing system efficiency.                                                                                 |
| 3.6. Critically assess the performance of existing<br>mechanical systems and recommend<br>improvements based on thermodynamic<br>principles to reduce waste and maximize<br>energy output.                                                            |
| 3.7. Utilize simulation software or experimental methods to validate thermodynamic models and optimize system parameters under varying operational conditions.                                                                                        |
| 3.8. Demonstrate the ability to select appropriate<br>thermodynamic cycles, components, and<br>materials that maximize energy efficiency in<br>specific mechanical applications.                                                                      |
| 3.9. Communicate the findings and<br>recommendations effectively through<br>technical reports and presentations, clearly<br>explaining thermodynamic analyses, system<br>optimization strategies, and the rationale<br>behind suggested improvements. |



#### ME0003 - 4. Fluid Mechanics

This unit aims to establish a thorough understanding of fluid properties and behavior, focusing on key concepts such as pressure, flow rate, and fluid dynamics. It is designed to enable learners to apply fluid mechanics principles effectively in the design and analysis of mechanical systems, including pumps, turbines, and piping. The unit also equips learners with the ability to solve practical fluid flow problems, enhancing their ability to optimize and improve the performance of fluid-based mechanical engineering systems in accordance with international industry standards.

| Lea | arning Outcome:                                   | Assessment Criteria:                                     |
|-----|---------------------------------------------------|----------------------------------------------------------|
| 1.  | Develop a solid understanding of fluid properties | 1.1. Pressure: Understand the concept of pressure        |
|     | and behavior, including pressure, flow rate, and  | as the force per unit area exerted by a fluid on         |
|     | fluid dynamics.                                   | the surfaces it contacts. Apply Pascal's Law to          |
|     |                                                   | analyze fluid static conditions, where pressure          |
|     |                                                   | is transmitted equally in all directions. Use            |
|     |                                                   | pressure-depth relationships (e.g., hydrostatic          |
|     |                                                   | pressure) to calculate pressure at various               |
|     |                                                   | depths in fluids, especially in applications like        |
|     |                                                   | tanks or submerged systems.                              |
|     |                                                   | 1.2. Flow Rate: Comprehend the definition and            |
|     |                                                   | units of flow rate, typically expressed as               |
|     |                                                   | volume per unit time (e.g., m <sup>3</sup> /s or L/min). |
|     |                                                   | Apply the continuity equation $(A_1V_1 = A_2V_2)$ to     |
|     |                                                   | analyze how flow rate is conserved in systems            |
|     |                                                   | with varying cross-sectional areas, such as              |
|     |                                                   | pipes, ducts, or nozzles. Recognize the                  |
|     |                                                   | significance of mass flow rate (pAV), where $\rho$       |
|     |                                                   | is the fluid density and A is the cross-sectional        |
|     |                                                   | area.                                                    |
|     |                                                   | 1.3. Fluid Properties: Understand the basic              |
|     |                                                   | properties of fluids, such as density, viscosity,        |
|     |                                                   | surface tension, and specific heat capacity,             |
|     |                                                   | and how these influence fluid behavior in                |
|     |                                                   | different conditions. Use the Reynolds                   |
|     |                                                   | number to determine whether a flow is                    |
|     |                                                   | laminar or turbulent, affecting the design of            |
|     |                                                   | piping, pumps, and valves.                               |
|     |                                                   | 1.4. Fluid Dynamics: Study Bernoulli's principle to      |
|     |                                                   | understand the relationship between                      |
|     |                                                   | pressure, velocity, and elevation in a flowing           |
|     |                                                   | tiuid. Apply it to various systems, such as flow         |
|     |                                                   | in pipes or over wings, to analyze the                   |
|     |                                                   | conservation of energy. Use the Navier-Stokes            |
|     |                                                   | equations to solve for velocity and pressure             |



fields in more complex, real-world fluid flow problems involving viscosity and turbulence.

- 1.5. Viscous Flow: Understand laminar flow and turbulent flow and the factors that influence each type, including fluid velocity, pipe diameter, and fluid viscosity. Use the Darcy-Weisbach equation to calculate head loss due to friction in pipes and other conduits, and the Colebrook equation for calculating friction factors in turbulent flow.
- 1.6. Flow in Pipes and Ducts: Analyze the pressure drop in fluid systems using the Darcy-Weisbach equation for laminar and turbulent flow. Apply minor loss coefficients for components like valves, bends, and fittings. Calculate flow rates, velocities, and required pump powers in various industrial applications like HVAC systems, water distribution, and oil pipelines.
- 1.7. Fluid Statics and Dynamics: Understand fluid statics (study of fluids at rest) and fluid dynamics (study of fluids in motion). Apply the principles of pressure variation with depth, hydrostatic force, and buoyancy to solve problems related to fluid containment, such as in reservoirs, dams, and floating objects.
- 1.8. Flow Regimes and Control: Analyze different flow regimes in closed systems, such as steady-state flow versus unsteady flow, and how control valves, pumps, and compressors are used to regulate flow rates. Use flow control methods to optimize fluid movement in pipes, channels, and ducts to achieve efficient system operation.
- 1.9. Real-World Applications: Apply fluid property concepts and behavior to practical engineering systems, including pumps, heat exchangers, turbines, and piping networks, ensuring efficient fluid transport, heat exchange, and power generation. Assess the influence of fluid properties on system performance and design solutions for fluidrelated challenges.



| 2. | Apply fluid mechanics principles to the design    | 2.1. Demonstrate a comprehensive understanding        |
|----|---------------------------------------------------|-------------------------------------------------------|
|    | and analysis of systems such as pumps, turbines,  | of fluid mechanics principles and their               |
|    | and piping.                                       | application to engineering systems.                   |
|    |                                                   | 2.2. Accurately analyze and calculate the flow        |
|    |                                                   | characteristics of fluids in systems such as          |
|    |                                                   | pumps, turbines, and piping.                          |
|    |                                                   | 2.3. Use relevant equations and models to             |
|    |                                                   | determine key system parameters, including            |
|    |                                                   | pressure, flow rate, and velocity.                    |
|    |                                                   | 2.4. Evaluate the impact of fluid properties          |
|    |                                                   | (density, viscosity, temperature) on the              |
|    |                                                   | performance of pumps, turbines, and piping            |
|    |                                                   | systems.                                              |
|    |                                                   | 2.5. Design effective pump and turbine systems        |
|    |                                                   | based on fluid dynamics principles, optimizing        |
|    |                                                   | efficiency and performance.                           |
|    |                                                   | 2.6. Analyze the benavior of fluids in piping         |
|    |                                                   | regimes frictional lesses and prossure drop           |
|    |                                                   | 2.7 Apply advanced computational tools or             |
|    |                                                   | simulations to predict fluid behavior and             |
|    |                                                   | system performance                                    |
|    |                                                   | 2.8. Critically assess the operational limitations of |
|    |                                                   | fluid systems and propose solutions to                |
|    |                                                   | improve performance or efficiency.                    |
|    |                                                   | 2.9. Integrate safety standards and regulatory        |
|    |                                                   | requirements into the design and analysis of          |
|    |                                                   | fluid systems, ensuring compliance with               |
|    |                                                   | international engineering practices.                  |
| 3. | Solve practical problems related to fluid flow in | 3.1. Analyze and identify fluid flow problems in      |
|    | mechanical engineering systems.                   | mechanical engineering systems, applying              |
|    |                                                   | fundamental principles of fluid dynamics and          |
|    |                                                   | thermodynamics.                                       |
|    |                                                   | 3.2. Use appropriate theoretical models to predict    |
|    |                                                   | the behavior of fluids in various systems,            |
|    |                                                   | including pipe flow, open channels, and HVAC          |
|    |                                                   | systems.                                              |
|    |                                                   | 3.3. Select and apply the correct fluid flow          |
|    |                                                   | equations (e.g., Bernoulli's equation, Navier-        |
|    |                                                   | Stokes equations, or Darcy-Weisbach                   |
|    |                                                   | equation) for specific system conditions.             |
|    |                                                   | 3.4. Conduct experiments or simulations to            |
|    |                                                   | measure fluid properties, such as velocity,           |
|    |                                                   | pressure, and temperature, and interpret the          |



| results accurately.                                |
|----------------------------------------------------|
| 3.5. Evaluate the effects of fluid flow resistance |
| and losses (such as frictional losses or           |
| turbulence) on system performance, using           |
| standard methods and tools.                        |
| 3.6. Apply numerical methods or computational      |
| fluid dynamics (CFD) software to solve             |
| complex fluid flow problems in mechanical          |
| systems, ensuring the accuracy of the results.     |
| 3.7. Propose practical solutions to optimize fluid |
| flow performance in mechanical systems,            |
| considering energy efficiency, cost-               |
| effectiveness, and system reliability.             |
| 3.8. Communicate solutions effectively in both     |
| written reports and oral presentations,            |
| providing clear explanations of                    |
| methodologies, results, and                        |
| recommendations.                                   |
| 3.9. Collaborate with team members and             |
| stakeholders, demonstrating the ability to         |
| discuss, analyze, and solve fluid flow-related     |
| issues in multidisciplinary engineering            |
| projects.                                          |
|                                                    |



#### ME0003 - 5. Materials Science

This unit aims to provide a comprehensive understanding of the properties and behavior of materials used in mechanical engineering, including metals, polymers, ceramics, and composites. It is designed to enable learners to evaluate the impact of material selection on the performance, reliability, and durability of mechanical components. The unit also focuses on the practical application of material science principles to select and optimize materials for specific mechanical engineering applications, ensuring alignment with industry standards and performance requirements.

| Learning Outcome:                            | Assessment Criteria:                                 |
|----------------------------------------------|------------------------------------------------------|
| 1. Understand the properties and behavior of | 1.1. Demonstrate a comprehensive understanding       |
| materials used in mechanical engineering,    | of the fundamental properties of materials           |
| including metals, polymers, ceramics, and    | used in mechanical engineering, including            |
| composites.                                  | metals, polymers, ceramics, and composites.          |
|                                              | 1.2. Identify and describe the mechanical,           |
|                                              | thermal, and electrical properties of various        |
|                                              | materials, such as strength, hardness,               |
|                                              | conductivity, and elasticity.                        |
|                                              | 1.3. Explain the behavior of materials under         |
|                                              | different loading conditions, including tensile,     |
|                                              | compressive, and shear stresses.                     |
|                                              | 1.4. Analyze the impact of temperature,              |
|                                              | environmental factors, and manufacturing             |
|                                              | processes on the properties and performance          |
|                                              | of materials.                                        |
|                                              | 1.5. Evaluate the suitability of different materials |
|                                              | for specific engineering applications,               |
|                                              | considering factors like cost, performance,          |
|                                              | 1.6 Understand the concents of material failure      |
|                                              | including fracture fatigue and corrosion and         |
|                                              | annly this knowledge to material selection           |
|                                              | and design                                           |
|                                              | 1.7. Compare the advantages and disadvantages        |
|                                              | of metals, polymers, ceramics, and                   |
|                                              | composites in terms of their mechanical              |
|                                              | properties and application areas.                    |
|                                              | 1.8. Investigate the influence of material           |
|                                              | microstructure on its properties and                 |
|                                              | performance, and understand the effects of           |
|                                              | heat treatment and processing techniques.            |
|                                              | 1.9. Apply knowledge of material properties to       |
|                                              | solve engineering problems, ensuring the             |
|                                              | selection of the most appropriate material for       |



|                                                     | each application.                                   |
|-----------------------------------------------------|-----------------------------------------------------|
| 2. Evaluate the impact of material selection on the | e 2.1. Assess how the mechanical properties of      |
| performance and durability of mechanical            | selected materials, such as strength,               |
| components.                                         | hardness, and fatigue resistance, influence         |
|                                                     | the performance of mechanical components            |
|                                                     | under operational conditions.                       |
|                                                     | 2.2. Evaluate the impact of material selection on   |
|                                                     | the longevity and reliability of components,        |
|                                                     | considering factors like wear, corrosion, and       |
|                                                     | thermal cycling.                                    |
|                                                     | 2.3. Analyze the trade-offs between different       |
|                                                     | materials in terms of performance, cost, and        |
|                                                     | manufacturability, ensuring optimal material        |
|                                                     | choice for specific component requirements.         |
|                                                     | 2.4. Investigate the effect of environmental        |
|                                                     | factors, such as temperature, numidity, and         |
|                                                     | behavior of materials used in mechanical            |
|                                                     | components                                          |
|                                                     | 2.5 Consider the impact of material selection on    |
|                                                     | component maintenance needs failure rates           |
|                                                     | and lifecycle costs promoting long-term             |
|                                                     | durability and efficiency.                          |
|                                                     | 2.6. Evaluate the role of material selection in     |
|                                                     | mitigating failure modes such as fatigue,           |
|                                                     | creep, and fracture, ensuring the safe              |
|                                                     | operation of mechanical components over             |
|                                                     | time.                                               |
|                                                     | 2.7. Examine the compatibility of chosen materials  |
|                                                     | with manufacturing processes, ensuring that         |
|                                                     | material characteristics are not compromised        |
|                                                     | during production.                                  |
|                                                     | 2.8. Integrate considerations of sustainability and |
|                                                     | environmental impact into material selection,       |
|                                                     | prioritizing eco-menday, energy-encient, and        |
|                                                     | 2.9 Apply material testing and applysis methods     |
|                                                     | such as stress testing and fatigue testing to       |
|                                                     | validate the performance and durability of          |
|                                                     | materials in real-world conditions.                 |
|                                                     |                                                     |
| 3. Apply material science principles to select      | 3.1. Demonstrate an understanding of material       |
| appropriate materials for specific mechanical       | science principles, including atomic structure,     |
| engineering applications.                           | crystal structure, and phase diagrams, and          |



| how they influence material properties.           |
|---------------------------------------------------|
| 3.2. Evaluate the mechanical, thermal, and        |
| chemical properties of materials, such as         |
| tensile strength, hardness, thermal               |
| conductivity, and corrosion resistance, for       |
| selecting materials suited to specific            |
| applications.                                     |
| 3.3. Analyze the required performance             |
| characteristics of mechanical components,         |
| considering factors such as load-bearing          |
| capacity, environmental conditions, and           |
| operational temperatures.                         |
| 3.4. Apply material selection methodologies, such |
| identify the most suitable material based on      |
| desired properties and application                |
| constraints                                       |
| 3.5 Assess the impact of material processing      |
| techniques, such as heat treatment, alloving.     |
| and forming, on the material's performance        |
| and suitability for specific engineering tasks.   |
| 3.6. Consider the manufacturability and cost-     |
| effectiveness of materials, ensuring that         |
| material selection aligns with production         |
| capabilities and budget constraints.              |
| 3.7. Integrate sustainability considerations into |
| material selection, choosing materials that       |
| minimize environmental impact and enhance         |
| energy efficiency over the component's            |
| lifecycle.                                        |
| 3.8. Evaluate the potential for material          |
| degradation, such as wear, fatigue, or            |
| withstand the energy conditions of the            |
| application                                       |
| 3.9 Balance material performance with safety      |
| ensuring the selected material meets              |
| regulatory standards and minimizes failure        |
| risks during use.                                 |
| S S                                               |



#### ME0003 - 6. Manufacturing Processes

This unit aims to provide a comprehensive understanding of various manufacturing processes, including casting, welding, machining, and additive manufacturing. It is designed to equip learners with the skills to evaluate and select the most appropriate manufacturing methods based on material properties, design specifications, and cost considerations. The unit also focuses on the application of practical knowledge to design efficient, cost-effective mechanical systems, ensuring that learners can make informed decisions to optimize production processes in line with industry standards.

| Lea | arning Outcome:                                 | Assessment Criteria:                               |
|-----|-------------------------------------------------|----------------------------------------------------|
| 1.  | Understand and evaluate various manufacturing   | 1.1. Demonstrate a comprehensive understanding     |
|     | processes, such as casting, welding, machining, | of various manufacturing processes, including      |
|     | and additive manufacturing.                     | casting, welding, machining, and additive          |
|     |                                                 | manufacturing, and their applications in           |
|     |                                                 | mechanical engineering.                            |
|     |                                                 | 1.2. Evaluate the advantages and limitations of    |
|     |                                                 | each manufacturing process, considering            |
|     |                                                 | factors such as material compatibility,            |
|     |                                                 | complexity, and production volume.                 |
|     |                                                 | 1.3. Analyze the impact of process parameters,     |
|     |                                                 | such as temperature, pressure, and speed, on       |
|     |                                                 | the quality and properties of the final            |
|     |                                                 | product.                                           |
|     |                                                 | 1.4. Assess the suitability of different           |
|     |                                                 | manufacturing processes for specific               |
|     |                                                 | component requirements, including                  |
|     |                                                 | geometry, material, strength, and surface finish.  |
|     |                                                 | 1.5. Investigate the role of process control and   |
|     |                                                 | quality assurance in achieving precision,          |
|     |                                                 | minimizing defects, and ensuring consistency       |
|     |                                                 | in manufacturing outcomes.                         |
|     |                                                 | 1.6. Understand the environmental impact of each   |
|     |                                                 | manufacturing process, including energy            |
|     |                                                 | consumption, waste production, and                 |
|     |                                                 | sustainability considerations.                     |
|     |                                                 | 1.7. Evaluate the influence of post-processing     |
|     |                                                 | finishing or assembly on the overall product       |
|     |                                                 | nerformance and manufacturing efficiency           |
|     |                                                 | 1.8. Apply principles of material flow tooling and |
|     |                                                 | equipment selection to optimize                    |
|     |                                                 | manufacturing processes for cost-                  |
|     |                                                 | effectiveness and high-quality production.         |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                          | 1.9. Stay informed about advancements in           |
|----|------------------------------------------|----------------------------------------------------|
|    |                                          | manufacturing technologies, such as                |
|    |                                          | automation and smart manufacturing, and            |
|    |                                          | evaluate their potential for improving             |
|    |                                          | efficiency and product quality.                    |
| 2  | Select appropriate manufacturing methods | 2.1 Evaluate material properties including         |
| ۷. | based on material properties design      | strength hardness ductility and thermal            |
|    | requirements and cost constraints        | conductivity to determine the most suitable        |
|    | requirements, and cost constraints.      | manufacturing methods for a given                  |
|    |                                          | component                                          |
|    |                                          | 2.2 Analyze design requirements such as            |
|    |                                          | component geometry complexity tolerances           |
|    |                                          | and surface finish to ensure the chosen            |
|    |                                          | manufacturing method aligns with the desired       |
|    |                                          | specifications                                     |
|    |                                          | 2.3. Consider cost constraints, including material |
|    |                                          | costs. labor. energy consumption. and              |
|    |                                          | production time, to select the most cost-          |
|    |                                          | effective manufacturing process without            |
|    |                                          | compromising quality or performance.               |
|    |                                          | 2.4. Assess the compatibility of various           |
|    |                                          | manufacturing methods, such as casting,            |
|    |                                          | forging, machining, or additive                    |
|    |                                          | manufacturing, with the selected material and      |
|    |                                          | design features.                                   |
|    |                                          | 2.5. Determine the required production volume to   |
|    |                                          | select between methods like mass production        |
|    |                                          | techniques (e.g., injection molding, die           |
|    |                                          | casting) and low-volume or custom methods          |
|    |                                          | (e.g., additive manufacturing or machining).       |
|    |                                          | 2.6. Factor in the potential for waste generation  |
|    |                                          | and scrap rates in different manufacturing         |
|    |                                          | methods, prioritizing those that minimize          |
|    |                                          | material waste and improve sustainability.         |
|    |                                          | 2.7. Consider post-processing requirements, such   |
|    |                                          | as heat treatment, surface finishing, or           |
|    |                                          | assembly, to select a manufacturing method         |
|    |                                          | that minimizes additional steps and optimizes      |
|    |                                          | etticiency.                                        |
|    |                                          | 2.8. Analyze lead time and production scheduling,  |
|    |                                          | selecting methods that ensure timely delivery      |
|    |                                          | while meeting design and performance               |
|    |                                          | criteria.                                          |
|    |                                          | 2.9. Ensure compliance with industry standards,    |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                                | regulatory requirements, and safety practices       |
|----|------------------------------------------------|-----------------------------------------------------|
|    |                                                | in the selection of manufacturing methods.          |
|    |                                                |                                                     |
| 3. | Apply practical knowledge of manufacturing to  | 3.1. Leverage an understanding of manufacturing     |
|    | design efficient and cost-effective mechanical | processes to design mechanical systems that         |
|    | systems.                                       | are optimized for ease of production,               |
|    |                                                | minimizing complexity and ensuring                  |
|    |                                                | manufacturability.                                  |
|    |                                                | 3.2. Select materials and manufacturing methods     |
|    |                                                | that balance performance, durability, and           |
|    |                                                | cost, ensuring the system meets both                |
|    |                                                | functional and financial requirements.              |
|    |                                                | 3.3. Design components with practical               |
|    |                                                | manufacturing considerations, such as               |
|    |                                                | minimizing the number of parts, using               |
|    |                                                | standard materials, and reducing the need for       |
|    |                                                | complex machining or assembly processes.            |
|    |                                                | 3.4. Apply principles of design for                 |
|    |                                                | manufacturability (DFM) and design for              |
|    |                                                | assembly (DFA) to streamline production,            |
|    |                                                | reduce labor costs, and enhance system              |
|    |                                                | efficiency.                                         |
|    |                                                | 3.5. Evaluate and integrate cost-saving strategies, |
|    |                                                | such as reducing material waste, optimizing         |
|    |                                                | tool life, and minimizing energy consumption,       |
|    |                                                | into the design of mechanical systems.              |
|    |                                                | 3.6. Account for production volumes when            |
|    |                                                | choosing between high-volume                        |
|    |                                                | manufacturing processes (e.g., injection            |
|    |                                                | molding, die casting) and low-volume                |
|    |                                                | techniques (e.g., additive manufacturing or         |
|    |                                                | CNC machining).                                     |
|    |                                                | 3.7. Ensure that the system design allows for       |
|    |                                                | scalability and adaptability, facilitating          |
|    |                                                | adjustments to production processes or              |
|    |                                                | materials without significant cost increases.       |
|    |                                                | 3.8. Incorporate testing and prototyping phases to  |
|    |                                                | verify the design's manufacturability and           |
|    |                                                | performance, addressing potential production        |
|    |                                                | issues before full-scale manufacturing.             |
|    |                                                | 3.9. Stay informed about the latest advancements    |
|    |                                                | in manufacturing technologies, incorporating        |
|    |                                                | innovations like automation, smart                  |
|    |                                                | manufacturing, or 3D printing to improve            |
|    |                                                | design efficiency and reduce costs.                 |



#### ME0003 - 7. Engineering Mechanics

This unit aims to develop a deep understanding of the principles of statics and dynamics to analyze the forces and moments acting on mechanical structures and systems. Learners will gain the skills to solve problems related to the motion of objects, including acceleration, velocity, and force distribution. The unit also focuses on applying engineering mechanics principles to evaluate and understand the behavior of mechanical components under load, providing a solid foundation for practical applications in mechanical engineering in line with international standards.

| Learning Outcome:                          | Assessment Criteria:                                |
|--------------------------------------------|-----------------------------------------------------|
| 1. Analyze the forces and moments acting o | n 1.1. Apply fundamental principles of statics and  |
| mechanical structures and systems usin     | g dynamics to analyze forces and moments            |
| principles of statics and dynamics.        | acting on mechanical structures and systems,        |
|                                            | ensuring a comprehensive understanding of           |
|                                            | equilibrium and motion.                             |
|                                            | 1.2. Use free-body diagrams to identify and         |
|                                            | represent all forces, moments, and reactions        |
|                                            | acting on a structure or system.                    |
|                                            | 1.3. Solve equilibrium equations for static         |
|                                            | systems, ensuring that the sum of forces and        |
|                                            | formers are zero to determine unknown               |
|                                            | 1.4 Analyze the effect of applied loads including   |
|                                            | noint loads distributed loads and moments           |
|                                            | on structural components such as beams              |
|                                            | frames, and trusses.                                |
|                                            | 1.5. Apply the principles of dynamics to study the  |
|                                            | motion of mechanical systems, incorporating         |
|                                            | Newton's laws of motion and the principles of       |
|                                            | work and energy.                                    |
|                                            | 1.6. Evaluate dynamic forces, such as acceleration, |
|                                            | velocity, and momentum, acting on moving            |
|                                            | components or systems, considering factors          |
|                                            | like damping and friction.                          |
|                                            | 1.7. Use advanced techniques such as vibration      |
|                                            | analysis and modal analysis to assess dynamic       |
|                                            | response in structures subjected to oscillatory     |
|                                            | 1 9 Apply appropriate material properties and       |
|                                            | 1.0. Apply appropriate material properties and      |
|                                            | strain, and deformation in response to forces       |
|                                            | and moments.                                        |
|                                            | 1.9. Integrate computer-aided design (CAD) and      |
|                                            | simulation tools to model and analyze forces.       |



|    |                                                                                                                  | moments, and system behavior under various loading conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Solve problems related to the motion of objects,<br>including acceleration, velocity, and force<br>distribution. | <ul> <li>2.1. Apply kinematic equations to solve problems involving the motion of objects, calculating parameters such as velocity, acceleration, displacement, and time under various conditions.</li> <li>2.2. Analyze the motion of objects under constant and variable acceleration, using principles of linear and rotational motion to derive appropriate equations of motion.</li> <li>2.3. Use Newton's second law of motion to solve force distribution problems, determining the relationship between force, mass, and</li> </ul> |
|    |                                                                                                                  | <ul> <li>acceleration in a system.</li> <li>2.4. Solve dynamic problems involving multiple forces acting on objects, including gravitational, frictional, and applied forces, to determine resultant accelerations and velocities.</li> <li>2.5 Apply principles of work energy and power</li> </ul>                                                                                                                                                                                                                                        |
|    |                                                                                                                  | to analyze the motion of objects, calculating<br>the energy required to achieve specific<br>velocities or accelerations.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                  | 2.6. Use free-body diagrams to represent forces acting on objects and systems, applying equilibrium and motion principles to solve for unknown forces and accelerations.                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                  | 2.7. Solve problems involving rotational motion,<br>using concepts of torque, moment of inertia,<br>and angular acceleration to determine<br>rotational forces and velocities.                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                  | 2.8. Integrate concepts of impulse and<br>momentum to analyze collisions or changes in<br>motion due to varying forces, determining<br>impact forces and post-collision velocities.                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                                                  | 2.9. Solve problems involving force distribution in<br>structures or systems, ensuring load balancing<br>and stability under various motion conditions.                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. | Apply engineering mechanics principles to<br>understand the behavior of mechanical<br>components under load.     | 3.1. Apply the principles of equilibrium to analyze mechanical components under load, ensuring that forces and moments acting on components are balanced and the system is                                                                                                                                                                                                                                                                                                                                                                  |



| stable.                                             |
|-----------------------------------------------------|
| 3.2. Use stress-strain relationships to understand  |
| the deformation of mechanical components            |
| under various loading conditions, such as           |
| tension, compression, shear, and torsion.           |
| 3.3. Apply concepts of material strength, including |
| yield strength, ultimate tensile strength, and      |
| fatigue limits, to predict the behavior and         |
| failure modes of components under load.             |
| 3.4. Analyze the distribution of internal forces,   |
| such as normal forces, shear forces, and            |
| bending moments, in structural components           |
| like beams, shafts, and columns.                    |
| 3.5. Use beam theory to calculate deflections,      |
| bending stresses, and shear stresses in             |
| components subjected to external loads,             |
| considering factors such as material                |
| properties and geometry.                            |
| 3.6. Apply the principles of torsion and shear to   |
| analyze components subjected to twisting or         |
| shear loads, calculating the resulting shear        |
| stresses and angle of twist.                        |
| 3.7. Evaluate the impact of dynamic loading, such   |
| as vibrations or impact forces, on mechanical       |
| components, using principles of dynamics and        |
| resonance analysis.                                 |
| 3.8. Use finite element analysis (FEA) or other     |
| computational methods to model and                  |
| components under complex loading                    |
| conditions                                          |
| 3.9 Assess the effects of environmental factors     |
| such as temperature changes or corrosive            |
| environments on the behavior and                    |
| performance of mechanical components                |
| under load.                                         |
|                                                     |



#### ME0003 - 8. Mechanical Systems and Control

The aim of this study unit is to provide learners with a comprehensive understanding of the design, operation, and optimization of mechanical systems. It focuses on the application of mechanical drives, linkages, and automation, as well as the integration of control theory and techniques to enhance system performance. Learners will develop the skills required to design, analyze, and optimize mechanical systems incorporating control mechanisms, ensuring efficient and effective system regulation. This unit is aligned with international engineering standards, equipping learners with the knowledge to apply theoretical concepts in practical, real-world scenarios.

| Learning Outcome:                                                                                                                             | Assessment Criteria:                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Understand the design and operation of<br/>mechanical systems, including mechanical<br/>drives, linkages, and automation.</li> </ol> | 1.1. Demonstrate a thorough understanding of the principles of mechanical system design, including the selection and integration of components such as mechanical drives, linkages, and automation systems.             |
|                                                                                                                                               | 1.2. Analyze the operation of mechanical drives, such as gears, belts, pulleys, and chain drives, considering factors like torque transmission, efficiency, and speed ratios.                                           |
|                                                                                                                                               | 1.3. Evaluate the design and functioning of linkages,<br>including four-bar mechanisms and other multi-<br>link systems, to convert motion or force in<br>mechanical systems.                                           |
|                                                                                                                                               | 1.4. Understand the principles of kinematics and<br>dynamics as applied to mechanical linkages,<br>ensuring smooth and efficient motion transfer<br>within systems.                                                     |
|                                                                                                                                               | 1.5. Assess the role of automation in mechanical<br>systems, including the use of sensors, actuators,<br>controllers, and feedback loops to optimize<br>performance and control system behavior.                        |
|                                                                                                                                               | 1.6. Integrate control systems with mechanical designs, ensuring compatibility between mechanical components and electronic systems to achieve automated operation.                                                     |
|                                                                                                                                               | 1.7. Apply mechanical design principles to create<br>systems that are reliable, efficient, and capable of<br>meeting required operational conditions,<br>including considering load handling, precision,<br>and safety. |
|                                                                                                                                               | <ol> <li>1.8. Understand the maintenance and troubleshooting<br/>processes for mechanical systems, including<br/>diagnostics and preventive measures to ensure<br/>reliable system performance.</li> </ol>              |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                                 | 1.9. | Evaluate the impact of system constraints, such as |
|----|-------------------------------------------------|------|----------------------------------------------------|
|    |                                                 |      | space, cost, and material selection, on the design |
|    |                                                 |      | and operation of mechanical systems.               |
| 2. | Apply control theory and techniques to regulate | 2.1. | Apply the fundamental principles of control        |
|    | mechanical processes and optimize system        |      | theory, including feedback loops, stability, and   |
|    | performance.                                    |      | transfer functions, to regulate mechanical         |
|    |                                                 |      | processes and maintain desired system              |
|    |                                                 |      | performance.                                       |
|    |                                                 | 2.2. | Use proportional, integral, and derivative (PID)   |
|    |                                                 |      | control techniques to manage dynamic behavior      |
|    |                                                 |      | in mechanical systems, ensuring optimal response   |
|    |                                                 |      | to changes in input and external disturbances.     |
|    |                                                 | 2.3. | Analyze and design control systems that maintain   |
|    |                                                 |      | the stability and accuracy of mechanical           |
|    |                                                 |      | processes, considering system dynamics, sensor     |
|    |                                                 |      | feedback, and actuator capabilities.               |
|    |                                                 | 2.4. | Implement control algorithms to regulate           |
|    |                                                 |      | mechanical systems, such as motors, actuators,     |
|    |                                                 |      | and robotic arms, optimizing performance criteria  |
|    |                                                 |      | like speed, position, and force.                   |
|    |                                                 | 2.5. | Utilize system modeling and simulation tools to    |
|    |                                                 |      | design and test control systems, ensuring the      |
|    |                                                 |      | system responds correctly to varying inputs and    |
|    |                                                 |      | adheres to performance specifications.             |
|    |                                                 | 2.6. | Apply frequency-domain analysis, such as Bode      |
|    |                                                 |      | plots and Nyquist criteria, to assess and design   |
|    |                                                 |      | control systems for stability and robustness in    |
|    |                                                 |      | mechanical processes.                              |
|    |                                                 | 2.7. | Integrate advanced control techniques, such as     |
|    |                                                 |      | adaptive control or model predictive control       |
|    |                                                 |      | (MPC), to optimize system performance in           |
|    |                                                 | 20   | Applying the effects of time delays poice and      |
|    |                                                 | 2.0. | analyze the effects of time delays, hoise, and     |
|    |                                                 |      | control strategies that mitigate these challenges  |
|    |                                                 |      | and enhance performance                            |
|    |                                                 | 29   | Use state-space analysis and modern control        |
|    |                                                 | 2.5. | methods to develop and implement sonhisticated     |
|    |                                                 |      | control systems for complex mechanical             |
|    |                                                 |      | processes.                                         |
| 3. | Design and analyze mechanical systems with      | 3.1. | Develop mechanical system designs that integrate   |
|    | integrated control mechanisms.                  |      | control mechanisms, ensuring seamless              |
|    |                                                 |      | coordination between mechanical components         |
|    |                                                 |      | and control systems for optimal performance.       |



| 3.2. Apply principles of control theory to design     |
|-------------------------------------------------------|
| feedback loops that regulate mechanical systems,      |
| ensuring stability, accuracy, and response time       |
| under varying load and environmental conditions.      |
| 3.3. Select and integrate appropriate sensors,        |
| actuators, and controllers into mechanical            |
| systems to monitor and adjust system behavior in      |
| real time, maintaining desired outputs such as        |
| position, speed, or force.                            |
| 3.4. Analyze the dynamic behavior of mechanical       |
| systems with integrated control mechanisms,           |
| using system modeling and simulation tools to         |
| predict performance and optimize control              |
| strategies.                                           |
| 3.5. Design closed-loop control systems that minimize |
| error and improve system response, applying           |
| techniques such as PID control, state-space           |
| control, or adaptive control as needed.               |
| 3.6. Ensure the mechanical system design              |
| accommodates the specific requirements of the         |
| control system, including power supply, signal        |
| processing, and communication protocols.              |
| 3.7. Consider the interaction between mechanical      |
| components and control systems in terms of            |
| energy efficiency, wear reduction, and system         |
| longevity, optimizing the overall system design.      |
| 3.8. Evaluate the impact of system disturbances, such |
| as environmental factors or external forces, on       |
| control performance and adjust the design to          |
| mitigate these effects.                               |
| 3.9. Implement diagnostic and fault detection         |
| mechanisms within the design, ensuring the            |
| integrated control systems can identify and           |
| address performance issues early.                     |



#### ME0003 - 9. Strength of Materials

The aim of this study unit is to provide learners with an in-depth understanding of the mechanical behavior of materials under various stress conditions, including tension, compression, bending, and shear. It emphasizes the analysis of material deformation and failure mechanisms to assess the strength and stability of mechanical components. Learners will apply the principles of material strength to the design, testing, and evaluation of mechanical structures, ensuring they meet safety, performance, and durability requirements. This unit aligns with international engineering standards, preparing learners to address real-world challenges in material design and structural integrity.

| Learning Outcome: Assess                           | sment Criteria:                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <b>1.</b> Understand the mechanical behavior of 1. | 1. Understand the basic concepts of stress and                                                                            |
| materials under stress, including tension,         | strain, including the definitions of tensile,                                                                             |
| compression, bending, and shear.                   | compressive, shear, and bending stresses, and                                                                             |
|                                                    | their effects on materials under load.                                                                                    |
| 1.1                                                | 2. Analyze the behavior of materials subjected                                                                            |
|                                                    | to tensile stress, determining how they                                                                                   |
|                                                    | deform and the point at which they fail or                                                                                |
|                                                    | fracture, including concepts of yield strength                                                                            |
|                                                    | and ultimate tensile strength.                                                                                            |
| 1                                                  | 3. Examine the effects of compressive stress on                                                                           |
|                                                    | materials, understanding buckling, crushing,                                                                              |
|                                                    | and the material's ability to withstand                                                                                   |
|                                                    | compressive forces before yielding or failing.                                                                            |
| 1.                                                 | 4. Evaluate how materials respond to bending                                                                              |
|                                                    | stresses, calculating bending moments, shear                                                                              |
|                                                    | forces, and deflections, and assessing the                                                                                |
|                                                    | material's ability to resist bending failure                                                                              |
|                                                    | through factors like the moment of inertia                                                                                |
|                                                    | and modulus of elasticity.                                                                                                |
| 1.                                                 | 5. Investigate the behavior of materials under                                                                            |
|                                                    | shear stress, including the development of                                                                                |
|                                                    | shear planes and shear failure, and                                                                                       |
|                                                    | understand the relationship between shear                                                                                 |
|                                                    | force and material strength.                                                                                              |
| 1.                                                 | 5. Apply Hooke's law to understand the elastic                                                                            |
|                                                    | behavior of materials under stress, analyzing                                                                             |
|                                                    | the linear relationship between stress and                                                                                |
|                                                    | strain within the elastic limit.                                                                                          |
| 1.                                                 | <ol> <li>Explore plastic deformation and the transition</li> <li>from electic to plastic behavior under bicker</li> </ol> |
|                                                    | strong lovels including the role of straig                                                                                |
|                                                    | scress levels, including the role of strain                                                                               |
| 1                                                  | Assess the impact of material properties such                                                                             |



| <ul> <li>as ductility, brittleness, toughness, and hardness, on the mechanical behavior of materials under different types of stress.</li> <li>1.9. Use material testing methods, such as tensile tests, compression tests, and bending tests, to empirically determine the mechanical properties and stress-strain relationships of materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2.1. Analyze the stress-strain curve of materials to determine their deformation behavior, identifying key points such as the yield strength, ultimate tensile strength, and fracture point, to assess the material's ability to withstand applied loads.</li> <li>2.2. Use failure theories, such as von Mises or Tresca criteria, to predict the failure of ductile materials under multiaxial stress, and the maximum normal stress or maximum shear stress criteria for brittle materials.</li> <li>2.3. Evaluate the types of deformation (elastic, plastic, or catastrophic failure) and determine whether a component will return to its original shape or undergo permanent deformation under load.</li> <li>2.4. Apply fatigue analysis to assess the performance of mechanical components under cyclic loading, considering factors like load frequency, amplitude, and the material's fatigue limit to predict failure over time.</li> <li>2.5. Use fracture mechanics principles to analyze crack propagation, identifying the critical crack size and stress intensity factors that lead to fracture under tensile or bending stress.</li> <li>2.6. Apply safety factors to account for uncertainties in material properties, loading conditions, and environmental factors, ensuring that components remain safe and functional under expected operating conditions.</li> <li>2.7. Assess the effects of environmental factors, such as temperature, corrosion, or wear, on material properties and component stability, and incorporate protective coatings or</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|                                                                                              | <ul> <li>performance.</li> <li>2.8. Implement computational tools such as finite element analysis (FEA) to model and simulate material deformation and failure under various loading conditions, allowing for the prediction of stress concentrations and potential failure points.</li> <li>2.9. Consider the effect of stress concentrators, such as sharp corners or holes, on material deformation and failure, and design components to minimize these factors for enhanced strength and stability.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Apply principles of material strength to the design and testing of mechanical structures. | <ul> <li>3.1. Apply material strength concepts, such as yield strength, ultimate tensile strength, and fatigue strength, to select appropriate materials for mechanical structures based on expected loads and environmental conditions.</li> <li>3.2. Design mechanical structures that incorporate safety factors derived from material strength properties to ensure the structure remains safe under both normal and extreme operating conditions.</li> <li>3.3. Utilize stress analysis methods, including both simple and advanced techniques, such as finite element analysis (FEA), to evaluate the distribution of stresses and determine potential failure points in the structure.</li> <li>3.4. Design structural components to minimize stress concentrations by optimizing shapes, reducing sharp corners, and incorporating features that distribute loads more evenly across the material.</li> <li>3.5. Apply the principles of load distribution, ensuring that forces (tensile, compressive, shear, and bending) are effectively managed across the structure to prevent excessive localized stresses that could lead to material failure.</li> <li>3.6. Integrate material testing results, such as tensile, impact, and fatigue tests, into the design process to ensure that the chosen material meets the strength and durability requirements for the specific application.</li> </ul> |
|                                                                                              | 3.7. Use fatigue analysis to design components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| that can withstand cyclic loading, considering the material's fatigue limit and the number of                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| load cycles the structure will experience during its service life.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>3.8. Consider the effects of environmental factors, such as temperature fluctuations, corrosion, or exposure to chemicals, on the material's strength and design the structure to mitigate these risks through material selection or protective coatings.</li> <li>3.9. Implement design modifications, such as reinforcing weak sections or incorporating redundant safety features, to enhance the overall strength and reliability of the mechanical structure.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



#### ME0003 - 10. Project Management in Engineering

The aim of this study unit is to equip learners with essential project management skills tailored to engineering projects, focusing on planning, scheduling, and budgeting to ensure efficient project execution. Learners will apply industry-standard tools and techniques to manage projects effectively, ensuring timely delivery, adherence to budget, and compliance with quality standards. Additionally, the unit emphasizes the integration of risk management, safety protocols, and sustainability principles in engineering projects, preparing learners to manage complex engineering tasks while maintaining high standards of safety, environmental responsibility, and project success.

| Learning Outcome:                               | Assessment Criteria:                                     |
|-------------------------------------------------|----------------------------------------------------------|
| 1. Develop project management skills, including | 1.1. Develop a clear project scope and objectives,       |
| planning, scheduling, and budgeting, for        | ensuring that all stakeholders understand the            |
| engineering projects.                           | project goals, deliverables, and deadlines from          |
|                                                 | the outset.                                              |
|                                                 | 1.2. Apply project planning techniques, such as Work     |
|                                                 | Breakdown Structures (WBS), to break down                |
|                                                 | complex engineering projects into manageable             |
|                                                 | tasks and define the sequence of activities.             |
|                                                 | 1.3. Use scheduling tools like Gantt charts, Critical    |
|                                                 | Path Method (CPM), or Program Evaluation and             |
|                                                 | Review Technique to allocate time, resources,            |
|                                                 | and set milestones for each project phase.               |
|                                                 | 1.4. Establish realistic project timelines and deadlines |
|                                                 | by assessing task durations, dependencies, and           |
|                                                 | resource availability, ensuring that the project         |
|                                                 | progresses smoothly and stays on track.                  |
|                                                 | 1.5. Identify project risks early in the planning phase, |
|                                                 | and develop risk management strategies to                |
|                                                 | mitigate potential delays, cost overruns, or             |
|                                                 | 1.6 Proparo comprohensivo project hudgets                |
|                                                 | considering all costs such as labor materials            |
|                                                 | equinment and overheads and track expenses               |
|                                                 | throughout the project lifecycle to ensure cost          |
|                                                 | control.                                                 |
|                                                 | 1.7. Implement cost estimation techniques, such as       |
|                                                 | parametric or analogous estimating, to predict           |
|                                                 | project costs accurately and minimize financial          |
|                                                 | risks.                                                   |
|                                                 | 1.8. Monitor project progress regularly using project    |
|                                                 | management software or other tracking tools to           |
|                                                 | ensure the project stays within scope, time, and         |
|                                                 | budget constraints.                                      |
|                                                 | 1.9. Communicate effectively with team members and       |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                                   | stakeholders, providing regular updates on            |
|----|---------------------------------------------------|-------------------------------------------------------|
|    |                                                   | project status, addressing any concerns, and          |
|    |                                                   | managing expectations to maintain alignment           |
|    |                                                   | with project goals.                                   |
| 2. | Apply tools and techniques to manage              | 2.1. Use project management software (e.g.,           |
|    | engineering projects effectively, ensuring timely | Microsoft Project, Primavera, or Asana) to track      |
|    | completion within budget and quality standards.   | tasks, milestones, and timelines, ensuring efficient  |
|    |                                                   | project execution and the identification of           |
|    |                                                   | potential delays early.                               |
|    |                                                   | 2.2. Implement project scheduling techniques, such as |
|    |                                                   | Critical Path Method (CPM) and Gantt charts, to       |
|    |                                                   | manage dependencies, allocate resources, and          |
|    |                                                   | track progress toward timely completion.              |
|    |                                                   | 2.3. Apply resource management tools to optimize the  |
|    |                                                   | allocation of personnel, equipment, and               |
|    |                                                   | materials, ensuring the right resources are           |
|    |                                                   | available when needed without overloading or          |
|    |                                                   | underutilizing them.                                  |
|    |                                                   | 2.4. Use earned value management (EVM) techniques     |
|    |                                                   | to monitor project performance in terms of cost,      |
|    |                                                   | time, and scope, helping to identify and address      |
|    |                                                   | Variances before they impact project success.         |
|    |                                                   | 2.5. Apply quality management tools like Six Sigma or |
|    |                                                   | anging deliverables most or exceed quality            |
|    |                                                   | standards, reducing defects and rework                |
|    |                                                   | 2.6 Implement risk management techniques, such as     |
|    |                                                   | risk matrices or failure mode analysis (EMEA) to      |
|    |                                                   | identify assess and mitigate risks ensuring           |
|    |                                                   | project objectives are met despite uncertainties.     |
|    |                                                   | 2.7. Monitor project performance against key          |
|    |                                                   | performance indicators (KPIs) such as cost.           |
|    |                                                   | schedule adherence, and resource utilization.         |
|    |                                                   | adjusting plans as needed to stay within scope        |
|    |                                                   | and budget.                                           |
|    |                                                   | 2.8. Communicate regularly with project stakeholders  |
|    |                                                   | using status reports, progress meetings, and          |
|    |                                                   | dashboards to ensure alignment with project           |
|    |                                                   | goals and prompt identification of issues.            |
|    |                                                   | 2.9. Apply procurement management practices to        |
|    |                                                   | efficiently source materials, services, and           |
|    |                                                   | equipment, ensuring that procurement processes        |
|    |                                                   | meet budget constraints and quality                   |
|    |                                                   | requirements.                                         |



| 3. | Demonstrate an understanding of risk      | 3.1. | Identify and assess potential risks in engineering |
|----|-------------------------------------------|------|----------------------------------------------------|
|    | management, safety, and sustainability in |      | projects, including technical, financial,          |
|    | engineering projects.                     |      | environmental, and operational risks, using risk   |
|    |                                           |      | assessment tools such as risk matrices and failure |
|    |                                           |      | mode effects analysis (FMEA).                      |
|    |                                           | 3.2. | Develop and implement risk mitigation strategies,  |
|    |                                           |      | ensuring that measures are in place to minimize    |
|    |                                           |      | or eliminate identified risks, and continuously    |
|    |                                           |      | monitor risk levels throughout the project         |
|    |                                           |      | lifecycle.                                         |
|    |                                           | 3.3. | Understand and apply safety standards,             |
|    |                                           |      | regulations, and best practices (such as OSHA or   |
|    |                                           |      | ISO 45001) to ensure a safe working environment    |
|    |                                           |      | for project teams and stakeholders, minimizing     |
|    |                                           | 2.4  | the likelihood of accidents and injuries.          |
|    |                                           | 3.4. | of the project from planning and design to         |
|    |                                           |      | execution and commissioning ensuring that          |
|    |                                           |      | safety is a top priority in both the design and    |
|    |                                           |      | operational processes                              |
|    |                                           | 3.5. | Apply sustainability principles in the design and  |
|    |                                           |      | execution of engineering projects, considering the |
|    |                                           |      | environmental impact, energy efficiency, and       |
|    |                                           |      | resource conservation throughout the project       |
|    |                                           |      | lifecycle.                                         |
|    |                                           | 3.6. | Evaluate the environmental impact of engineering   |
|    |                                           |      | projects by conducting lifecycle assessments (LCA) |
|    |                                           |      | and ensuring compliance with environmental         |
|    |                                           |      | regulations such as ISO 14001 or local             |
|    |                                           |      | environmental laws.                                |
|    |                                           | 3.7. | Incorporate sustainable design practices, such as  |
|    |                                           |      | using renewable resources, minimizing waste, and   |
|    |                                           |      | the carbon feeturint and promote long term         |
|    |                                           |      | sustainability                                     |
|    |                                           | 3.8  | Monitor and manage the health, safety, and         |
|    |                                           | 0.0. | environmental (HSE) performance of the project.    |
|    |                                           |      | ensuring compliance with relevant legal and        |
|    |                                           |      | regulatory requirements and continuously           |
|    |                                           |      | improving HSE standards.                           |
|    |                                           | 3.9. | Engage with stakeholders and the local             |
|    |                                           |      | community to understand their concerns and         |
|    |                                           |      | incorporate their feedback into the project's      |
|    |                                           |      | safety and sustainability planning.                |



#### ME0003 - 11. Computational Fluid Dynamics (CFD) and Simulation

The aim of this study unit is to provide learners with a solid understanding of the principles and applications of Computational Fluid Dynamics (CFD) in mechanical engineering. Learners will develop the skills to utilize CFD software tools to simulate fluid flow and heat transfer within mechanical systems, enabling them to analyze complex fluid behaviors. The unit will focus on interpreting CFD results to solve engineering challenges related to fluid mechanics, system optimization, and performance enhancement, ensuring learners are equipped with the knowledge and tools required to apply CFD techniques effectively in real-world engineering scenarios.

| Learning Outcome:                                                                                                                         | Assessment Criteria:                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Learning Outcome:<br>1. Understand the principles and applications of<br>Computational Fluid Dynamics (CFD) in<br>mechanical engineering. | <ul> <li>Assessment Criteria:</li> <li>1.1. Understand the fundamental principles of fluid mechanics, including continuity, conservation of momentum, and energy equations, and how these principles apply to fluid flow in mechanical systems.</li> <li>1.2. Comprehend the governing equations of fluid dynamics, such as the Navier Stekes equations.</li> </ul> |  |
|                                                                                                                                           | <ul> <li>and their role in predicting fluid behavior in various engineering applications.</li> <li>1.3. Learn the basic concepts of turbulence, boundary layers, and flow regimes, and understand how these phenomena impact the accuracy and reliability of CED simulations.</li> </ul>                                                                            |  |
|                                                                                                                                           | <ul> <li>1.4. Understand the different types of fluid flow (laminar, turbulent, compressible, incompressible) and their relevance to CFD modeling in mechanical engineering applications.</li> <li>1.5. Explore the mathematical and numerical methods</li> </ul>                                                                                                   |  |
|                                                                                                                                           | used in CFD, such as finite volume, finite element,<br>and finite difference methods, for solving fluid<br>flow problems.<br>1.6. Learn the process of discretizing continuous fluid<br>flow equations into algebraic forms that can be                                                                                                                             |  |
|                                                                                                                                           | solved computationally, and understand the<br>implications of mesh generation and grid<br>resolution on simulation accuracy.<br>1.7. Gain knowledge of turbulence models (e.g., k-ε, k-                                                                                                                                                                             |  |
|                                                                                                                                           | <ul> <li>ω, Large Eddy Simulation) and when to apply each model based on the flow characteristics of the system being analyzed.</li> <li>1.8 Understand the role of boundary conditions</li> </ul>                                                                                                                                                                  |  |
|                                                                                                                                           | <ul> <li>initial conditions, and solver settings in ensuring<br/>the accuracy and stability of CFD simulations.</li> <li>1.9. Recognize the importance of validating CFD</li> </ul>                                                                                                                                                                                 |  |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                                   | results with experimental data or analytical             |
|----|---------------------------------------------------|----------------------------------------------------------|
|    |                                                   | solutions to ensure the reliability of the model         |
|    |                                                   | predictions in real-world applications.                  |
| 2  | Use CED as the use to also to simulate fluid flow | 2.4. Deceme andicipation using CED software tools        |
| Ζ. | Use CFD software tools to simulate fluid flow     | 2.1. Become prolicient in using CFD software tools       |
|    | and neat transfer in mechanical systems.          | such as ANSYS Fluent, COMISOL, or OpenFOAM to            |
|    |                                                   | transfer problems in mechanical systems                  |
|    |                                                   | 2.2 Develop the ability to create and import geometry    |
|    |                                                   | from CAD models into CED software ensuring               |
|    |                                                   | that the model accurately represents the physical        |
|    |                                                   | system being simulated                                   |
|    |                                                   | 2.3 Learn how to generate and refine computational       |
|    |                                                   | meshes (grids) for CED simulations selecting the         |
|    |                                                   | appropriate mesh type (structured, unstructured)         |
|    |                                                   | and ensuring the mesh density is sufficient to           |
|    |                                                   | capture important flow features.                         |
|    |                                                   | 2.4. Set up boundary conditions and initial conditions   |
|    |                                                   | for simulations, including inlet velocity, outlet        |
|    |                                                   | pressure, wall temperature, and heat flux, based         |
|    |                                                   | on the specific mechanical system being modeled.         |
|    |                                                   | 2.5. Choose the correct fluid properties (density,       |
|    |                                                   | viscosity, thermal conductivity, etc.) and material      |
|    |                                                   | properties for the system and apply them in              |
|    |                                                   | simulations to ensure realistic fluid flow and heat      |
|    |                                                   | transfer predictions.                                    |
|    |                                                   | 2.6. Apply appropriate turbulence models (e.g., k-ε, k-  |
|    |                                                   | $\omega$ , LES) based on the flow regime and system      |
|    |                                                   | characteristics to simulate turbulent flows              |
|    |                                                   | accurately.                                              |
|    |                                                   | 2.7. Simulate heat transfer mechanisms, including        |
|    |                                                   | conduction, convection, and radiation, in                |
|    |                                                   | temperature distribution and heat flux in                |
|    |                                                   | components                                               |
|    |                                                   | 2.8 Run steady-state or transient simulations            |
|    |                                                   | depending on the nature of the problem, and              |
|    |                                                   | adjust solver settings such as convergence criteria      |
|    |                                                   | and time step for transient simulations.                 |
|    |                                                   | 2.9. Analyze simulation results by interpreting velocity |
|    |                                                   | profiles, pressure distributions, temperature            |
|    |                                                   | gradients, and heat transfer rates to assess             |
|    |                                                   | system performance and identify areas of                 |
|    |                                                   | improvement.                                             |
|    |                                                   |                                                          |



| 2  | Analyze and interpret CED results to solve | 21   | Interpret CED simulation results by analyzing key    |
|----|--------------------------------------------|------|------------------------------------------------------|
| э. | Analyze and interpret CPD results to solve | 5.1. | nate piet Ci D sinulation results by analyzing key   |
|    | and system antimization                    |      | fields temperature distributions and turbulance      |
|    | and system optimization.                   |      | neids, temperature distributions, and turbulence     |
|    |                                            |      | characteristics to understand the fluid dynamics     |
|    |                                            |      | and heat transfer behavior within the system.        |
|    |                                            | 3.2. | Evaluate flow patterns, identifying areas of         |
|    |                                            |      | recirculation, separation, and vortex formation, to  |
|    |                                            |      | understand how these features impact the overall     |
|    |                                            |      | performance and efficiency of mechanical             |
|    |                                            |      | systems.                                             |
|    |                                            | 3.3. | Examine pressure drops and flow resistance           |
|    |                                            |      | within piping systems, pumps, or ducts to identify   |
|    |                                            |      | potential inefficiencies and design improvements     |
|    |                                            |      | to optimize system performance.                      |
|    |                                            | 3.4. | Assess temperature gradients and heat fluxes         |
|    |                                            |      | across components to ensure efficient heat           |
|    |                                            |      | transfer and to optimize the thermal                 |
|    |                                            |      | management of mechanical systems, such as heat       |
|    |                                            |      | exchangers, cooling systems, or combustion           |
|    |                                            |      | chambers.                                            |
|    |                                            | 3.5. | Use CFD results to identify regions of high stress,  |
|    |                                            |      | vibration, or erosion in fluid-structure interaction |
|    |                                            |      | analyses, helping to enhance the structural          |
|    |                                            |      | integrity and lifespan of components.                |
|    |                                            | 3.6. | Optimize system performance by testing design        |
|    |                                            |      | modifications, such as changing flow path            |
|    |                                            |      | configurations, adjusting component geometry, or     |
|    |                                            |      | selecting alternative materials, based on the CFD    |
|    |                                            | 27   | results.                                             |
|    |                                            | 3.7. | Perform sensitivity analysis by varying simulation   |
|    |                                            |      | parameters (e.g., flow rates, boundary conditions,   |
|    |                                            |      | turbulence models) to understand their impact on     |
|    |                                            |      | system performance and to ensure robustness          |
|    |                                            | 2.0  | across different operating conditions.               |
|    |                                            | 3.8. | validate CFD predictions against experimental or     |
|    |                                            |      | real-world data, identifying discrepancies and       |
|    |                                            |      | adjusting simulation settings (e.g., mesh            |
|    |                                            |      | refinement, solver parameters) to improve the        |
|    |                                            | 2.2  | model's accuracy and reliability.                    |
|    |                                            | 3.9. | Apply optimization techniques, such as design of     |
|    |                                            |      | experiments (DOE) or genetic algorithms, in          |
|    |                                            |      | conjunction with CFD to identify the best system     |
|    |                                            |      | configurations or operating conditions for           |
|    |                                            |      | maximum efficiency and performance.                  |



#### ME0003 - 12. Sustainability and Environmental Engineering

The aim of this study unit is to provide learners with a comprehensive understanding of sustainability principles in mechanical engineering, focusing on the environmental impact of design and manufacturing processes. Learners will evaluate the role of mechanical engineering in tackling environmental challenges, such as improving energy efficiency and reducing waste. The unit will also emphasize the integration of sustainable practices into mechanical design and engineering solutions, equipping learners with the skills to develop environmentally responsible engineering solutions that minimize environmental impact and contribute to global sustainability goals.

| Learning Outcome:                                 | Assessment Criteria:                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. Understand the principles of sustainability in | 1.1. Comprehend the fundamental concepts of                                                                                                                                                                                                                                                                                                   |  |
| mechanical engineering, including the             | sustainability in mechanical engineering,                                                                                                                                                                                                                                                                                                     |  |
| environmental impact of design and                | emphasizing the balance between economic,                                                                                                                                                                                                                                                                                                     |  |
| manufacturing processes.                          | environmental, and social factors in engineering                                                                                                                                                                                                                                                                                              |  |
|                                                   | decisions.                                                                                                                                                                                                                                                                                                                                    |  |
|                                                   | 1.2. Understand the environmental impacts of various                                                                                                                                                                                                                                                                                          |  |
|                                                   | materials and manufacturing processes, including                                                                                                                                                                                                                                                                                              |  |
|                                                   | energy consumption, resource depletion, and                                                                                                                                                                                                                                                                                                   |  |
|                                                   | emissions, and how these can affect both local                                                                                                                                                                                                                                                                                                |  |
|                                                   | and global ecosystems.                                                                                                                                                                                                                                                                                                                        |  |
|                                                   | 1.3. Recognize the importance of life cycle assessment                                                                                                                                                                                                                                                                                        |  |
|                                                   | (LCA) in evaluating the environmental footprint of                                                                                                                                                                                                                                                                                            |  |
|                                                   | mechanical systems, from raw material extraction                                                                                                                                                                                                                                                                                              |  |
|                                                   | through manufacturing, use, and end-of-life                                                                                                                                                                                                                                                                                                   |  |
|                                                   | disposal or recycling.                                                                                                                                                                                                                                                                                                                        |  |
|                                                   | 1.4. Learn how to select materials with lower                                                                                                                                                                                                                                                                                                 |  |
|                                                   | environmental impact, such as biodegradable                                                                                                                                                                                                                                                                                                   |  |
|                                                   | polymers, recycled metals, or low-energy                                                                                                                                                                                                                                                                                                      |  |
|                                                   | production materials, while considering                                                                                                                                                                                                                                                                                                       |  |
|                                                   | mechanical properties and cost-effectiveness.                                                                                                                                                                                                                                                                                                 |  |
|                                                   | 1.5. Understand energy efficiency principles in                                                                                                                                                                                                                                                                                               |  |
|                                                   | mechanical design, including designing systems                                                                                                                                                                                                                                                                                                |  |
|                                                   | that minimize energy consumption during                                                                                                                                                                                                                                                                                                       |  |
|                                                   | operation, such as optimizing heat exchange                                                                                                                                                                                                                                                                                                   |  |
|                                                   | systems, reducing friction, and improving                                                                                                                                                                                                                                                                                                     |  |
|                                                   | thermodynamic performance.                                                                                                                                                                                                                                                                                                                    |  |
|                                                   | 1.6. Familiarize yourself with design strategies almed                                                                                                                                                                                                                                                                                        |  |
|                                                   | at reducing waste and promoting recycling,                                                                                                                                                                                                                                                                                                    |  |
|                                                   | including design for disassembly, modularity, and                                                                                                                                                                                                                                                                                             |  |
|                                                   | product longevity to extend the life cycle of                                                                                                                                                                                                                                                                                                 |  |
|                                                   | The change of the principles of the friendly                                                                                                                                                                                                                                                                                                  |  |
|                                                   | 1.7. comprehend the principles of eco-mendly                                                                                                                                                                                                                                                                                                  |  |
|                                                   | <ul> <li>1.6. Familiarize yourself with design strategies aimed at reducing waste and promoting recycling, including design for disassembly, modularity, and product longevity to extend the life cycle of mechanical components.</li> <li>1.7. Comprehend the principles of eco-friendly manufacturing processes such as additive</li> </ul> |  |



|       |                                              |      | manufacturing (3D printing), advanced machining    |
|-------|----------------------------------------------|------|----------------------------------------------------|
|       |                                              |      | techniques, and lean manufacturing that reduce     |
|       |                                              |      | material waste, energy use, and emissions.         |
|       |                                              |      |                                                    |
| 2. Ev | aluate the role of mechanical engineering in | 2.1. | Analyze the impact of mechanical engineering       |
| ad    | dressing environmental challenges, such as   |      | innovations on improving energy efficiency, such   |
| en    | ergy efficiency and waste reduction.         |      | as the development of high-performance systems     |
|       |                                              |      | that reduce energy consumption in buildings,       |
|       |                                              |      | transportation, and manufacturing.                 |
|       |                                              | 2.2. | Evaluate the role of mechanical engineers in       |
|       |                                              |      | designing and optimizing energy-efficient          |
|       |                                              |      | machinery, equipment, and systems, such as         |
|       |                                              |      | electric motors, compressors, HVAC systems, and    |
|       |                                              |      | renewable energy technologies (solar, wind, etc.). |
|       |                                              | 2.3. | Assess how mechanical engineering                  |
|       |                                              |      | advancements in thermodynamics and heat            |
|       |                                              |      | transfer contribute to reducing energy loss in     |
|       |                                              |      | systems, improving energy recovery, and            |
|       |                                              | 2.4  | ennancing overall system efficiency.               |
|       |                                              | 2.4. | examine the role of mechanical engineers in        |
|       |                                              |      | designing systems that integrate renewable         |
|       |                                              |      | papels and goothermal systems to reduce            |
|       |                                              |      | reliance on fossil fuels and decrease groonbouse   |
|       |                                              |      | ass emissions                                      |
|       |                                              | 25   | gas emissions.                                     |
|       |                                              | 2.5. | techniques in vehicle design such as lightweight   |
|       |                                              |      | materials aerodynamics and hybrid or electric      |
|       |                                              |      | nowertrains contribute to reducing fuel            |
|       |                                              |      | consumption and emissions in the transportation    |
|       |                                              |      | sector.                                            |
|       |                                              | 2.6. | Evaluate the contribution of mechanical            |
|       |                                              | -    | engineering to waste reduction through the         |
|       |                                              |      | development of more efficient manufacturing        |
|       |                                              |      | processes, such as additive manufacturing,         |
|       |                                              |      | precision machining, and lean production           |
|       |                                              |      | methods, which reduce material waste and           |
|       |                                              |      | energy use.                                        |
|       |                                              | 2.7. | Assess the importance of recycling and reusing     |
|       |                                              |      | materials in mechanical design, including          |
|       |                                              |      | designing for disassembly, using recyclable        |
|       |                                              |      | materials, and developing products with longer     |
|       |                                              |      | life cycles to reduce landfill waste.              |
|       |                                              | 2.8. | Explore how mechanical engineers apply concepts    |
|       |                                              |      | such as circular economy and sustainability in     |

## ICTQual Level 4 Diploma in Mechanical Engineering 120 Credits – One Year



|    |                                                 |      | designing systems that minimize resource          |
|----|-------------------------------------------------|------|---------------------------------------------------|
|    |                                                 |      | consumption and promote the reuse and             |
|    |                                                 |      | recycling of materials.                           |
| 2  | Integrate quateinable practices into machanical | 2.1  | Apply principles of systemable design such as     |
| 3. | Integrate sustainable practices into mechanical | 3.1. | Apply principles of sustainable design, such as   |
|    | design and engineering solutions to minimize    |      | energy eniciency, material conservation, and      |
|    | environmental impact.                           |      | antimizing designs for minimal resource usage     |
|    |                                                 |      | and reduced environmental impact                  |
|    |                                                 | 22   | Use life cycle assessment (ICA) to evaluate and   |
|    |                                                 | 5.2. | compare the environmental impact of different     |
|    |                                                 |      | design options, selecting materials and processes |
|    |                                                 |      | with the lowest environmental footprint over the  |
|    |                                                 |      | entire product life cycle.                        |
|    |                                                 | 3.3. | Incorporate renewable energy sources, such as     |
|    |                                                 |      | solar, wind, or geothermal, into mechanical       |
|    |                                                 |      | system designs to reduce dependence on non-       |
|    |                                                 |      | renewable energy and support sustainability       |
|    |                                                 |      | goals.                                            |
|    |                                                 | 3.4. | Design systems that maximize energy efficiency,   |
|    |                                                 |      | such as developing optimized thermal systems,     |
|    |                                                 |      | low-power components, and energy recovery         |
|    |                                                 |      | mechanisms, to reduce overall energy              |
|    |                                                 | 2 5  | consumption during operation.                     |
|    |                                                 | 3.5. | Use lightweight materials and efficient           |
|    |                                                 |      | manufacturing techniques, such as additive        |
|    |                                                 |      | consumption, and the environmental impact of      |
|    |                                                 |      | nroduction processes                              |
|    |                                                 | 3.6  | Implement design for disassembly (DED)            |
|    |                                                 | 5.0. | strategies, ensuring products can be easily       |
|    |                                                 |      | deconstructed for recycling, repurposing, or safe |
|    |                                                 |      | disposal, promoting the circular economy and      |
|    |                                                 |      | reducing waste at the end of life.                |
|    |                                                 | 3.7. | Select sustainable materials, including recycled, |
|    |                                                 |      | biodegradable, or low-impact alternatives,        |
|    |                                                 |      | ensuring that the mechanical system is not only   |
|    |                                                 |      | high-performing but also environmentally          |
|    |                                                 |      | responsible.                                      |
|    |                                                 | 3.8. | Incorporate eco-friendly manufacturing practices  |
|    |                                                 |      | such as precision engineering, lean production,   |
|    |                                                 |      | and closed-loop manufacturing to reduce material  |
|    |                                                 |      | waste, lower energy consumption, and improve      |
|    |                                                 |      | resource efficiency.                              |



## **ICTQual AB**

Yew Tree Avenue, Dagenham,

London East, United Kingdom RM10 7FN

+44 744 139 8083

Support@ictqualab.co.uk | www.ictqualab.co.uk

Visit Official Web page

