

Qualification Specification

Level 4 Diploma in Civil Engineering 120 Credits – One Year

Website www.ictgualab.co.uk Email: Support@ictgualab.co.uk

ICTQual AB

Level 4 Diploma in Civil Engineering 120 Credits – One Year

Contents

2
2
3
3
3
4
6
6
7
-

Qualification Specifications about

ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year

About ICTQual AB

ICTQual AB UK Ltd. is a distinguished awarding body based in the United Kingdom, dedicated to fostering excellence in education, training, and skills development. Committed to global standards, ICTQual AB provides internationally recognized qualifications that empower individuals and organizations to thrive in an increasingly competitive world. Their offerings span diverse industries, including technical fields, health and safety, management, and more, ensuring relevance and adaptability to modern workforce needs.

The organization prides itself on delivering high-quality educational solutions through a network of Approved Training Centres worldwide. Their robust curriculum and innovative teaching methodologies are designed to equip learners with practical knowledge and skills for personal and professional growth. With a mission to inspire lifelong learning and drive positive change, ICTQual AB continuously evolves its programs to stay ahead of industry trends and technological advancements.

ICTQual AB's vision is to set benchmarks for educational excellence while promoting inclusivity and integrity. Their unwavering focus on quality and accessibility makes them a trusted partner in shaping future-ready professionals and advancing societal progress globally.

Course Overview

The ICTQual Level 4 Diploma in Civil Engineering is a comprehensive one-year program designed to provide learners with foundational knowledge and practical skills necessary for a successful career in civil engineering. This diploma focuses on core areas such as structural design, construction methods, surveying techniques, and sustainable engineering practices. By integrating theoretical understanding with hands-on training, students gain the ability to address real-world engineering challenges.

This program is suitable for those aspiring to work in diverse roles within the civil engineering sector, including site management, project coordination, and structural analysis. It also prepares learners for further studies, serving as a stepping stone to advanced qualifications or professional certifications in the field.

Key features of the program include access to modern learning facilities, interactive workshops, and exposure to industry-standard tools like AutoCAD and GIS technologies. Upon successful completion, graduates will be equipped to contribute to infrastructure projects, uphold ethical standards, and meet the growing demands of sustainable development in civil engineering.

www.ictqualab.co.uk

Page | 2

Certification Framework

Qualification title	ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year	
Course ID	CE0003	
Qualification Credits	120 Credits	
Course Duration	1 Year	
Grading Type	Pass / Fail	
Competency Evaluation	Coursework / Assignments / Verifiable Experience	
Assessment	The assessment and verification process for ICTQual qualifications involves two key stages:	
	Internal Assessment and Verification:	
	 ✓ Conducted by the staff at the Approved Training Centre (ATC). Ensures learners meet the required standards through continuous assessments. ✓ Internal quality assurance (IQA) is carried out by the centre's IQA staff to validate the assessment processes. 	
	External Quality Assurance:	
	 ✓ Managed by ICTQual AB verifiers, who periodically review the centre's assessment and IQA processes. ✓ Verifies that assessments are conducted to the required standards and 	
	ensures consistency across centres	

Entry Requirements

To enroll in the ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year, candidates must meet the following entry requirements:

- A minimum of a Level 3 qualification (e.g., A-Levels, NVQ Level 3, or equivalent). A background in mathematics, physics, or a related field is highly recommended.
- Minimum age of 16 years to enroll in the course.
- Basic computer skills, which are necessary for completing assignments, managing projects, and using engineering software and tools for design, analysis, and simulation.
- While not mandatory, prior experience or exposure to construction, engineering projects, or related technical fields can provide a strong foundation for understanding course material and enhancing practical learning outcomes.

Qualification Structure

This qualification comprises 12 mandatory units, totaling 120 credits. Candidates must successfully complete all mandatory units to achieve the qualification.

Mandatory Units		
Unit Ref#	Unit Title	Credits
CE0003-1	Introduction to Civil Engineering	10
CE0003-2	Materials Science and Engineering	10
CE0003-3	Surveying Techniques and Equipment	10
CE0003-4	Structural Analysis and Design	10
CE0003-5	Geotechnical Engineering	10
CE0003-6	Construction Technology and Methods	10
CE0003-7	Environmental and Sustainability Issues in Civil Engineering	10
CE0003-8	Project Management in Civil Engineering	10
CE0003-9	Construction Safety and Risk Management	10
CE0003-10	Hydraulics and Water Engineering	10
CE0003-11	Transportation Engineering and Planning	10
CE0003-12	Civil Engineering Design Project	10

Centre Requirements

Even if a centre is already registered with ICTQual AB, it must meet specific requirements to deliver the ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year. These standards ensure the quality and consistency of training, assessment, and learner support.

1. Approval to Deliver the Qualification

- ✓ Centres must obtain formal approval from ICTQual AB to deliver this specific qualification, even if they are already registered.
- ✓ The approval process includes a review of resources, staff qualifications, and policies relevant to the program.

2. Qualified Staff

- ✓ Tutors: Must have relevant qualifications in civil engineering or construction at Level 5 or higher, alongside teaching/training experience.
- ✓ Assessors: Must hold a recognized assessor qualification and demonstrate expertise in civil engineering
- ✓ Internal Quality Assurers (IQAs): Must be appropriately qualified and experienced to monitor the quality of assessments.

3. Learning Facilities

Centres must have access to appropriate learning facilities, which include:

- ✓ **Classrooms:** Modern classrooms equipped with multimedia tools to deliver engaging theoretical instruction on structural design, construction methods, and sustainable engineering practices.
- ✓ Practical Areas: Hands-on training areas with advanced equipment for material testing, surveying instruments, concrete mixing, and structural analysis, providing practical experience in real-world civil engineering applications.

www.ictqualab.co.uk

Page | 4

✓ Technology Access: High-performance computers with industry-standard software (e.g., AutoCAD, STAAD.Pro, Revit, and GIS tools) and reliable internet connectivity for drafting, modeling, and project management tasks.

4. Health and Safety Compliance

- ✓ Centres must ensure that practical training environments comply with relevant health and safety regulations.
- ✓ Risk assessments must be conducted regularly to maintain a safe learning environment.

5. Resource Requirements

- ✓ Learning Materials: Approved course manuals, textbooks, and study guides aligned with the curriculum.
- ✓ Assessment Tools: Templates, guidelines, and resources for conducting and recording assessments.
- ✓ E-Learning Systems: If offering online or hybrid learning, centres must provide a robust Learning Management System (LMS) to facilitate remote delivery.

6. Assessment and Quality Assurance

- ✓ Centres must adhere to ICTQual's assessment standards, ensuring that all assessments are fair, valid, and reliable.
- ✓ Internal quality assurance (IQA) processes must be in place to monitor assessments and provide feedback to assessors.
- ✓ External verification visits from ICTQual will ensure compliance with awarding body standards.

7. Learner Support

- ✓ Centres must provide learners with access to guidance and support throughout the program, including:
- ✓ Academic support for coursework.
- ✓ Career guidance for future progression.
- ✓ Additional support for learners with specific needs (e.g., disabilities or language barriers).

8. Policies and Procedures

Centres must maintain and implement the following policies, as required by ICTQual:

- ✓ Equal Opportunities Policy.
- ✓ Health and Safety Policy.
- ✓ Safeguarding Policies and Procedures.
- ✓ Complaints and Appeals Procedure.
- ✓ Data Protection and Confidentiality Policy.

9. Regular Reporting to ICTQual

- ✓ Centres must provide regular updates to ICTQual AB on learner enrollment, progress, and completion rates.
- Centres are required to maintain records of assessments and learner achievements for external auditing purposes.

www.ictqualab.co.uk

Page | 5

Support for Candidates

Centres should ensure that materials developed to support candidates:

- ✓ Facilitate tracking of achievements as candidate's progress through the learning outcomes and assessment criteria.
- \checkmark Include information on how and where ICTQual's policies and procedures can be accessed.
- ✓ Provide mechanisms for Internal and External Quality Assurance staff to verify and authenticate evidence effectively.

This approach ensures transparency, supports candidates' learning journeys, and upholds quality assurance standards.

Assessment

This qualification is competence-based, requiring candidates to demonstrate proficiency as defined in the qualification units. The assessment evaluates the candidate's skills, knowledge, and understanding against the set standards. Key details include:

1. Assessment Process:

- ✓ Must be conducted by an experienced and qualified assessor.
- ✓ Candidates compile a portfolio of evidence that satisfies all learning outcomes and assessment criteria for each unit.

2. Types of Evidence:

- ✓ Observation reports by the assessor.
- ✓ Assignments, projects, or reports.
- ✓ Professional discussions.
- ✓ Witness testimonies.
- ✓ Candidate-produced work.
- ✓ Worksheets.
- ✓ Records of oral and written questioning.
- ✓ Recognition of Prior Learning (RPL).

3. Learning Outcomes and Assessment Criteria:

- ✓ Learning Outcomes: Define what candidates should know, understand, or accomplish upon completing the unit.
- ✓ Assessment Criteria: Detail the standards candidates must meet to demonstrate that the learning outcomes have been achieved.

This framework ensures rigorous and consistent evaluation of candidates' competence in line with the qualification's objectives.

Unit Descriptors

CE0003 -1: Introduction to Civil Engineering

This study unit aims to provide learners with a foundational understanding of civil engineering's pivotal role in shaping society. It explores the diverse sectors within the industry, highlighting historical advancements and their influence on modern practices. The unit also aims to introduce key career pathways and the essential skills required for success, fostering an informed perspective on the profession's significance and opportunities.

Learning Outcome:	Assessment Criteria:
1. Understand the role of civil engineering i	1.1. Understand the fundamental contributions of
society and the various sectors within th	
industry.	design, construction, and maintenance of
	essential infrastructure such as roads, bridges,
	buildings, and water systems.
	1.2. Explore the historical development of civil
	engineering and its role in advancing human
	civilization through improved transportation,
	sanitation, and urban planning.
	1.3. Identify the key sectors within civil
	engineering, including transportation engineering, structural engineering,
	geotechnical engineering, water resources
	engineering, and environmental engineering.
	1.4. Recognize the importance of civil engineering
	in addressing global challenges such as
	urbanization, climate change, and sustainable
	development.
	1.5. Understand the role of civil engineers in
	disaster mitigation and recovery, including
	the design of resilient infrastructure to
	withstand natural hazards like earthquakes,
	floods, and hurricanes.
	1.6. Explore the contributions of civil engineering
	to public health through the development of
	clean water supply systems, effective sewage
	treatment, and pollution control. 1.7. Assess the impact of civil engineering projects
	on the environment, society, and economy,
	ensuring that designs prioritize sustainability
	and community well-being.
	1.8. Investigate the interdisciplinary nature of civil
	engineering, including collaborations with
	architects, urban planners, environmental
	scientists, and policymakers.
	1.9. Recognize the role of civil engineering in
	supporting industrial and commercial sectors,

ICTQual Level 4 Diploma in Civil Engineering 120 Credits — One Year

	such as manufacturing facilities, transportation hubs, and energy production infrastructure
2. Identify key career opportunities and the skills required to succeed in civil engineering.	 2.1 Explore diverse career opportunities in civil engineering, including roles in structural engineering, transportation engineering, geotechnical engineering, water resources engineering, environmental engineering, and construction management. 2.2 Understand specialized fields such as urban planning, disaster resilience engineering, renewable energy infrastructure, and smart city development. 2.3 Recognize opportunities in both public and private sectors, including government agencies, consulting firms, construction companies, and research organizations. 2.4 Develop technical skills such as proficiency in CAD software, structural analysis tools, Geographic Information Modeling (BIM). 2.5 Strengthen mathematical and analytical skills for problem-solving, including the ability to perform calculations related to forces, loads, and material properties. 2.6 Enhance project management skills, such as scheduling, resource allocation, budgeting, and risk management, to lead projects effectively. 2.7 Cultivate communication skills for collaborating with multidisciplinary teams, presenting designs, and engaging with clients and stakeholders. 2.8 Build knowledge of industry standards, building codes, and regulations to ensure compliance and successful project delivery. 2.9 Foster innovative thinking to incorporate emerging technologies and sustainable practices into civil engineering projects.
3. Recognize the history and evolution of civil engineering practices.	3.1 Study the origins of civil engineering as one of the oldest engineering disciplines, tracing its roots to ancient civilizations such as
	Mesopotamia, Egypt, and the Indus Valley. 3.2 Examine historical engineering achievements like the Egyptian pyramids, Roman aqueducts, the Great Wall of China, and medieval cathedrals, showcasing early innovations in

construction and materials.
3.3 Explore the role of civil engineering in shaping
urbanization and infrastructure during the
Industrial Revolution, including the development of railways, bridges, and canals.
3.4 Understand the evolution of construction
materials from natural materials like stone and
timber to modern materials such as steel,
reinforced concrete, and composites.
3.5 Recognize the impact of technological
advancements, such as the introduction of
mechanized construction equipment and the
use of explosives in large-scale excavation.
3.6 Investigate the development of surveying techniques and tools, from early instruments
like the groma and theodolite to modern GPS
and laser-based systems.
3.7 Trace the history of transportation
engineering, including the shift from dirt roads
and horse-drawn carriages to modern
highways, rail networks, and airports.
3.8 Learn about the history of water resources
engineering, including ancient irrigation systems, aqueducts, and modern dams and
wastewater treatment plants.
3.9 Study the emergence of geotechnical
engineering as a specialized field, including
advancements in soil mechanics and
foundation design.

CE0003 -2: Materials Science and Engineering

The aim of this study unit is to provide learners with a comprehensive understanding of construction materials, focusing on their properties, performance, and applications in civil engineering. Students will develop the ability to critically evaluate material suitability for diverse engineering projects, ensuring optimal performance and sustainability.

Learning Outcome:	Assessment Criteria:
1. Analyze the properties of construction	1.1. Examine the mechanical properties of
materials such as concrete, steel, and	concrete, including compressive strength,
composites.	tensile strength, modulus of elasticity, and
	durability, to understand its suitability for
	load-bearing applications.
	1.2. Analyze the chemical composition of concrete, focusing on cement, aggregates,
	and water, and assess the role of admixtures
	in enhancing workability, strength, and
	resistance to environmental factors.
	1.3. Investigate the properties of steel, such as its
	high tensile strength, ductility, toughness, and
	resistance to impact, making it ideal for
	structural frameworks and reinforcement.
	1.4. Study the effects of alloying elements in steel
	(e.g., carbon, chromium, manganese) and
	how they influence properties like hardness, corrosion resistance, and weldability.
	1.5. Evaluate the behavior of composites,
	including their high strength-to-weight ratio,
	stiffness, and versatility, which make them
	suitable for advanced construction
	applications.
	1.6. Explore the different types of composites,
	such as fiber-reinforced polymers (FRP), and
	assess their applications in bridge construction, retrofitting, and seismic
	strengthening.
	1.7. Assess the durability of concrete, including its
	resistance to weathering, chemical attack,
	and freeze-thaw cycles, and identify measures
	to prevent cracking and deterioration.
	1.8. Examine the thermal properties of steel and
	its performance under fire conditions,
	including its susceptibility to thermal
	expansion and loss of strength at high temperatures.
	1.9. Study the environmental impact of
	construction materials, such as the carbon
	footprint of cement production and the

	recyclability of steel and composites.
2. Evaluate the suitability of materials for different types of civil engineering projects.	 2.1 Assess the compressive strength of concrete for use in foundations, bridges, and high-rise buildings, ensuring it meets the required loadbearing capacity and durability for specific project conditions. 2.2 Evaluate the tensile and yield strength of steel to determine its suitability for structural frameworks, reinforcement, and high-stress applications, ensuring it can withstand dynamic and static loads. 2.3 Consider the workability and curing properties of concrete for different environmental conditions, such as high temperatures or wet climates, to ensure proper setting and longterm performance. 2.4 Analyze the corrosion resistance of steel and metals for use in projects exposed to harsh environments, such as marine structures or industrial facilities, selecting materials with proper coatings or treatments for longevity. 2.5 Evaluate the thermal properties of materials like concrete, steel, and timber, ensuring they can withstand temperature fluctuations without compromising the structural integrity of buildings or infrastructure. 2.6 Assess the durability of asphalt for use in road construction, considering factors such as traffic load, weather conditions, and maintenance needs, ensuring it provides a long-lasting surface. 2.7 Examine the moisture resistance of materials like timber, brick, and concrete, ensuring that they are suitable for foundations, walls, or pavements in areas with high water tables or heavy rainfall. 2.8 Evaluate the environmental impact of construction materials, prioritizing sustainable options like recycled aggregates, low-carbon cement, and eco-friendly materials like timber and stone for aesthetic and architectural applications, ensuring they provide both structural performance and desired visual qualities.

Page | 11

ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year

2.1 Conduct standard material tasts such as
 3.1 Conduct standard material tests, such as compressive, tensile, and flexural strength tests, to evaluate the strength of construction materials like concrete, steel, and timber. 3.2 Perform slump tests on fresh concrete to assess its workability and consistency, ensuring it meets the required specifications for mixing, pouring, and curing. 3.3 Carry out moisture content tests on soils and aggregates to determine their suitability for construction, particularly in the preparation of sub-bases and foundations. 3.4 Use ultrasonic pulse velocity tests to assess the integrity of concrete, detecting internal cracks, voids, or other defects that could affect durability and strength. 3.5 Test the water absorption rate of materials like bricks, aggregates, and concrete to evaluate their resistance to weathering and moisture infiltration, ensuring long-term durability. 3.6 Perform impact tests on construction materials, such as the Charpy or Izod tests, to determine their resistance to sudden or dynamic forces, which is particularly important for materials exposed to heavy loads. 3.7 Conduct aggregate testing (e.g., sieve analysis, specific gravity, and abrasion tests) to ensure that aggregates used in concrete and asphalt meet required strength and durability standards. 3.8 Assess the freeze-thaw resistance of concrete by subjecting samples to cycles of freezing and thawing, simulating exposure to extreme weather conditions.

Page | 12

CE0003 -3: Surveying Techniques and Equipment

This study unit aims to provide learners with a solid foundation in surveying principles and practices essential for civil engineering projects. The focus is on developing practical skills in using surveying equipment and techniques to measure and analyze distances, angles, and elevations accurately.

Learning Outcome:	Assessment Criteria:
1. Demonstrate proficiency in using surveying	1.1. Operate Total Stations to measure distances
equipment and techniques for measuring	and angles accurately, ensuring precise data
distances, angles, and elevations.	collection for use in design and construction.
	1.2. Use GPS surveying equipment to obtain
	precise coordinates and elevations, ensuring
	accurate positioning and mapping for large- scale projects.
	1.3. Calibrate and set up surveying instruments,
	such as theodolites and levels, to ensure
	accurate measurement of angles, distances,
	and elevations.
	1.4. Measure horizontal and vertical angles using a
	theodolite or total station to determine the
	layout of structures, roads, or utilities.
	1.5. Apply trigonometric formulas to convert
	angular measurements into horizontal and
	vertical distances, ensuring proper alignment of structures.
	1.6. Perform leveling procedures with optical and
	digital levels to measure and establish
	elevation differences across a site, ensuring
	accurate foundation placement.
	1.7. Utilize laser distance meters for quick and
	accurate distance measurements, particularly
	in hard-to-reach areas or for long-range
	measurements.
	1.8. Conduct closed-loop leveling to ensure
	elevation accuracy and to detect any errors in the leveling process.
	1.9. Use prism reflectors with total stations to
	measure long distances with high precision,
	ensuring the correct alignment of features like
	roads, bridges, or pipelines.
2 Interpret and apply surgering data for shill	2.1. Collect accurate data from various surraving
2. Interpret and apply surveying data for civil engineering projects.	2.1 Collect accurate data from various surveying instruments, such as total stations, GPS, laser
engineering projects.	scanners, and drones, to create precise site
	measurements and topographic maps.
	2.2 Interpret survey data to identify critical site
	features, including contours, existing
	structures, utilities, and geographical

	elements, to inform design decisions and ensure proper project planning. 2.3 Analyze elevation and contour data to understand the site's slope, drainage patterns,
	 and potential challenges, aiding in the design of foundations, roads, and drainage systems. 2.4 Use surveying data to establish reference points and benchmarks, ensuring all project measurements and construction align with the design and regulatory standards.
	2.5 Apply horizontal and vertical alignment data from surveys to design roads, railways, or pipelines, ensuring proper positioning and gradient for efficiency, safety, and regulatory compliance.
	2.6 Integrate survey data into CAD or BIM software to create accurate models of the site, enabling better visualization, design, and collaboration between engineers, architects, and contractors.
	 2.7 Verify property boundaries and easements using survey data to ensure that construction activities are within legal limits and comply with zoning and land use regulations. 2.8 Apply survey data to colouidate out and fill
	2.8 Apply survey data to calculate cut-and-fill quantities, which are essential for earthworks, grading, and ensuring proper site preparation for construction.
	2.9 Ensure that all survey data is appropriately scaled and referenced to maintain consistency with project plans, preventing misalignment during construction.
3. Understand modern advancements in surveying technologies and their impact on construction accuracy.	3.1 Explore the use of Geographic Information Systems (GIS) in surveying, which allows for precise mapping and spatial data analysis, improving site selection, planning, and resource management in construction projects.
	3.2 Understand the role of 3D laser scanning technology, which captures high-resolution data of existing structures or sites, providing accurate and detailed models for design and construction planning.
	3.3 Discuss the benefits of drones (UAVs) for aerial surveys, enabling real-time monitoring, site analysis, and progress tracking, especially in large or difficult-to-access sites.

3.4 Examine the application of Global Positioning Systems (GPS) and Total Stations for precise
measurement and positioning on-site,
enhancing accuracy in land surveys and
foundation placements.
3.5 Analyze how Building Information Modeling
(BIM) integrates with surveying technologies
to improve accuracy, streamline the design
process, and detect potential issues early in
construction.
3.6 Study the advancements in Robotic Total
Stations (RTS), which automate the process of
data collection and reduce human error,
improving productivity and precision on construction sites.
3.7 Evaluate the impact of high-definition surveys,
such as LiDAR (Light Detection and Ranging),
on construction planning by providing accurate
topographic and structural data for design and
evaluation.
3.8 Investigate the role of Augmented Reality (AR)
and Virtual Reality (VR) in surveying, enabling
real-time visualization and analysis of
construction sites, which can help in decision-
making and ensuring accuracy during the
building process. 3.9 Understand how real-time data collection and
cloud-based technologies allow for immediate
access to surveying information, leading to
faster decision-making and more accurate
construction planning.

CE0003 -4: Structural Analysis and Design

The aim of this study unit is to develop a comprehensive understanding of the principles and practices of structural engineering. Learners will acquire the ability to analyze and design structural components, ensuring their stability, safety, and functionality. By integrating theoretical knowledge with practical application, this unit prepares learners to address real-world challenges in structural engineering, utilizing industry-standard codes and methodologies.

Learning Outcome:	Assessment Criteria:
1. Analyze forces, moments, and load	1.1. Identify and define the types of loads acting
distributions in various structures.	on a structure, including dead loads, live
	loads, wind loads, seismic loads, and other
	environmental factors.
	1.2. Analyze the distribution of loads across
	structural elements, such as beams, columns,
	and foundations, to determine how they influence the overall stability and strength of
	the structure.
	1.3. Calculate internal forces (axial, shear, and
	bending) in structural members using
	methods like equilibrium equations, force
	diagrams, or software-based analysis tools.
	1.4. Determine the bending moment and shear
	force diagrams for beams under various load
	conditions to understand the distribution of
	stresses.
	1.5. Apply the principles of static equilibrium to analyze forces and moments in statically
	determinate structures and use compatibility
	equations for indeterminate structures.
	1.6. Use structural analysis techniques like the
	method of joints and the method of sections
	for trusses to calculate the forces in individual
	members.
	1.7. For frames and continuous beams, apply the
	moment-curvature relationship and use
	methods such as the matrix displacement
	method or finite element analysis for more complex load distributions.
	1.8. Calculate reactions at supports using
	equilibrium equations and analyze how these
	reactions affect the structure.
	1.9. Consider the impact of temperature changes,
	settlement, and deformations on the internal
	forces and moments in a structure.
2. Design simple structural elements such as	2.1. Determine the required load-carrying capacity
beams, columns, and foundations using	and select the appropriate material for
seams, columns, and roundations using	

onnyonyioto orginooying wetherde	boome columns and foundations been the
appropriate engineering methods.	beams, columns, and foundations based on design requirements.
	For beams:
	2.2 Calculate bending moments, shear forces, and deflections using relevant design formulas or software.2.3 Ensure beam dimensions meet strength,
	stiffness, and stability requirements. 2.4 Perform checks for bending stress, shear stress, and deflection, ensuring compliance with design codes.
	For columns:
	2.5 Calculate the axial load and determine if the column is short or slender.2.6 Apply appropriate methods (e.g., Euler's formula for slender columns) for buckling
	 analysis. 2.7 Select column material (steel, reinforced concrete) and design the cross-sectional area based on applied loads and material strength. 2.8 Ensure column stability against lateral buckling.
	For foundations:
	2.9 Determine the type of foundation (shallow or deep) based on soil conditions and load requirements.
	2.10 For shallow foundations, calculate soil bearing capacity and design dimensions to distribute loads safely.
	2.11 For deep foundations, choose methods (e.g., piles, caissons) and consider soil properties to determine load-bearing capacity.
	2.12 Perform settlement analysis to ensure the foundation does not experience excessive or uneven settlement.
	 2.13 Check for stability against sliding, overturning, and differential settlement. 2.14 Apply safety factors and comply with relevant design codes (AISC, Eurocodes, and
	ACI). 2.15 Use structural analysis tools to verify design performance.

ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year

	2.16 Ensure coordination of all design elements (beams, columns, foundations) within the overall structural system.
3. Apply structural design codes and standards to ensure safety and stability.	 3.1 Identify and understand relevant structural design codes and standards, such as Eurocodes, AISC, BS 5950, or the American Concrete Institute (ACI) codes that apply to different types of structures. 3.2 Interpret and apply load-bearing requirements outlined in design codes, including dead loads, live loads, wind loads, seismic loads, and other environmental factors, to ensure the stability of the structure. 3.3 Use design codes to determine the appropriate material specifications (e.g., concrete, steel, wood) based on strength, durability, and compatibility with the structure's needs. 3.4 Apply the principles of safety and reliability as outlined in design standards, incorporating factors of safety, redundancy, and load distribution into the design to prevent failure. 3.5 Ensure that design calculations, such as bending, shear, axial, and torsional stresses, comply with the allowable limits specified in structural codes to prevent structural instability. 3.6 Integrate fire resistance requirements, ensuring that materials and structural
	 components can withstand high temperatures for sufficient periods to protect the safety of occupants and allow evacuation. 3.7 Consider environmental factors such as thermal expansion, corrosion, and material degradation, and apply relevant standards to ensure the long-term durability and safety of the structure. 3.8 Incorporate seismic and wind design provisions as specified in the codes, ensuring that the structure can resist dynamic loads caused by earthquakes and extreme weather conditions. 3.9 Ensure compliance with accessibility and safety standards, including structural provisions for the safe use of the building by all users, including people with disabilities.

CE0003 -5: Geotechnical Engineering

The aim of this study unit is to provide learners with a solid foundation in geotechnical engineering principles, focusing on the mechanics and behavior of soil and rock in engineering applications. It enables students to acquire the skills necessary to perform soil testing, interpret findings, and apply these insights to foundation design and ground condition assessments for construction projects. This unit prepares learners to address geotechnical challenges in diverse civil engineering contexts with confidence and precision.

Learning Outcome:	Assessment Criteria:
1. Understand soil mechanics and the behavior	1.1. Understand the fundamental principles of soil
of soil and rock in engineering contexts.	mechanics, including the relationship
	between soil properties, behavior, and the
	application of load in engineering contexts.
	1.2. Analyze soil classification systems, such as the
	Unified Soil Classification System (USCS) and
	AASHTO, to determine soil types and their engineering properties.
	1.3. Evaluate the three-phase system of soil (solid,
	water, and air) and how the distribution of
	these phases affects soil strength,
	compressibility, and permeability.
	1.4. Examine the concept of soil compaction and
	its impact on the strength, stability, and
	bearing capacity of soil under load.
	1.5. Study the behavior of soil under different
	loading conditions, including elastic and
	plastic deformations, and understand how
	these affect the settlement and stability of structures.
	1.6. Investigate the shear strength of soil,
	including cohesion and internal friction, and
	how these properties influence the design of
	foundations and slopes.
	1.7. Understand soil consolidation, the process by
	which soil reduces in volume under load due
	to the expulsion of water from pore spaces,
	and its effects on settlement over time. 1.8. Analyze the permeability of soil and its role in
	drainage and groundwater flow, which
	impacts the design of foundations and
	geotechnical structures.
	1.9. Study the behavior of expansive soils and
	their potential for volume changes due to
	moisture fluctuations, which can affect the
	stability of foundations and pavements.
2. Conduct soil tests and interpret results for	2.1 Conduct site-specific soil investigations to
foundation design.	gather samples from different depths and

locations, ensuring representative data for foundation design. 2.2 Perform standard soil tests, such as the Standard Penetration Test (SPT), Cone Penetration Test (CPT), and laboratory tests (e.g., Atterberg limits, grain size distribution,
2.2 Perform standard soil tests, such as the Standard Penetration Test (SPT), Cone Penetration Test (CPT), and laboratory tests
Penetration Test (CPT), and laboratory tests
(e.g., Atterberg limits, grain size distribution,
moisture content, compaction, and
consolidation tests).
2.3 Analyze the results of soil compaction tests to
determine the soil's load-bearing capacity and
its suitability for supporting various foundation
types.
2.4 Interpret shear strength parameters, including
cohesion and friction angle, obtained from
direct shear or triaxial tests, to assess the soil's
ability to resist lateral forces and shear stress. 2.5 Examine the results of consolidation tests to
evaluate the potential for settlement under
load and predict the amount of settlement
that may occur over time.
2.6 Evaluate soil type and characteristics, such as
granularity, density, and moisture content, to
determine the foundation's depth and type,
whether shallow or deep (e.g., piles, caissons).
2.7 Assess the groundwater level and its
fluctuations to understand the potential
impact of hydrostatic pressure on the
foundation, and consider drainage
requirements.
2.8 Interpret the soil's plasticity index and
cohesive properties to determine whether the
soil is expansive, potentially leading to
foundation movement.
2.9 Use results from soil tests to design
foundations that mitigate risks like excessive
settlement, differential movement, or tilting
by selecting appropriate materials, foundation
depths, and reinforcement techniques.
Apply geotechnical principles to assess ground 3.1 Conduct soil investigations to determine the
conditions for construction projects. physical properties of the ground, including
soil type, composition, and compaction
characteristics.
3.2 Apply geotechnical tests, such as Standard
Penetration Tests (SPT), Cone Penetration
Tests (CPT), and laboratory soil tests, to assess
the bearing capacity and shear strength of the
soil.

3.3 Analyze soil stability and identify potential
risks related to soil settlement, erosion, or
liquefaction in earthquake-prone areas.
3.4 Assess groundwater conditions and their
impact on construction, including water table
levels, drainage, and the potential for flooding
or soil erosion.
3.5 Evaluate the suitability of soil for different
types of foundations, such as shallow
foundations, deep foundations, or pile
foundations, based on soil strength and load-
bearing capacity.
3.6 Interpret geotechnical data and create soil
profiles to support foundation design,
determining the appropriate depth and type of
foundation required for the project. 3.7 Consider the effects of external factors like
weather, seismic activity, and human activities
on the stability of the ground and surrounding
structures.
3.8 Propose methods to improve weak soil
conditions, such as soil stabilization, ground
improvement techniques, or the use of
geosynthetics for reinforcement.
3.9 Incorporate geotechnical principles into site
planning to ensure proper drainage, prevent
erosion, and minimize environmental impact
during construction.

CE0003 -6: Construction Technology and Methods

The aim of this Study unit is to provide learners with a comprehensive understanding of modern construction practices and technologies essential in civil engineering. This unit focuses on equipping students with the knowledge to analyze and implement contemporary construction techniques, understand the complete lifecycle of construction projects, and critically evaluate innovative methods like prefabrication and modular construction for enhanced efficiency and sustainability within the industry.

Learning Outcome:	Assessment Criteria:
1. Identify and apply modern construction	1.1. Identify key modern construction techniques,
techniques and technologies in civil engineering.	such as 3D printing, modular construction,
	and prefabrication, and explain how they
	improve efficiency, reduce costs, and enhance
	quality.
	1.2. Apply Building Information Modeling (BIM) to
	streamline design, construction, and project
	management processes, ensuring better collaboration and data sharing.
	1.3. Utilize advanced materials, such as self-
	healing concrete, high-performance
	insulation, and sustainable building materials,
	to improve durability, energy efficiency, and
	environmental impact.
	1.4. Incorporate smart construction technologies,
	like sensor-based monitoring systems and
	drones, for real-time site monitoring, quality
	control, and progress tracking.
	 Apply sustainable construction practices, such as using recycled materials, reducing waste,
	and adopting energy-efficient construction
	methods, to minimize environmental impact.
	1.6. Use automation and robotics, such as robotic
	arms for bricklaying or drones for surveying,
	to increase precision, reduce labor costs, and
	enhance safety on construction sites.
	1.7. Implement green building certifications and
	standards, such as LEED or BREEAM, to ensure
	that modern construction methods comply
	with environmental sustainability goals.
	1.8. Apply modular and off-site construction
	techniques to reduce construction time, enhance safety, and improve cost control by
	producing components in controlled factory
	environments.
	1.9. Explore the integration of renewable energy
	technologies, such as solar panels and wind
	turbines, in construction projects to promote
	energy efficiency and sustainability.

2 Understand the construction of the	2.1 Eveloin the stars of the second of the second
2. Understand the construction process, from excavation and site preparation to finishing.	 Explain the stages of the construction process, beginning with site preparation, excavation,
excavation and site preparation to finishing.	and foundation work.
	2.2 Describe the steps involved in clearing and
	preparing a construction site, including land
	surveying, clearing vegetation, and grading.
	2.3 Discuss the excavation process, including the
	use of heavy machinery for digging
	foundations, trenches, and utilities.
	2.4 Identify the different types of foundations
	used in construction, such as shallow foundations doon foundations and slab
	foundations, deep foundations, and slab
	foundations, and their application based on
	soil conditions.
	2.5 Explain the construction of structural
	elements, including the framework, beams,
	columns, and slabs, and how they provide
	stability to the structure.
	2.6 Outline the process of installing utilities, such
	as plumbing, electrical systems, and HVAC, and
	their integration into the building structure.
	2.7 Discuss the importance of structural
	inspections and quality control at each stage of
	construction to ensure compliance with safety
	standards.
	2.8 Detail the finishing processes, such as
	plastering, painting, flooring, and interior
	fittings that give the building its final
	appearance.
	2.9 Discuss the role of project management
	throughout the construction process to ensure
	timelines, budgets, and quality standards are
3. Evaluate the use of prefabrication, modular	met. 3.1 Evaluate the advantages and disadvantages of
	prefabrication and modular construction
construction, and other innovative methods in	methods in terms of cost, time efficiency, and
the industry.	quality control.
	3.2 Analyze how prefabrication and modular
	construction can reduce construction waste,
	energy consumption, and the overall
	environmental footprint of a project.
	3.3 Discuss the impact of these methods on
	project timelines, including the reduction of
	on-site construction time and faster
	completion of projects.
	3.4 Examine how modular construction and
	prefabrication contribute to improved safety
	standards by minimizing on-site work and
	standards by minimizing on-site work and

reducing exposure to hazardous conditions.
3.5 Assess the flexibility of modular systems in
adapting to different project types, sizes, and
architectural designs.
C C
3.6 Explore the role of digital technologies, such as
Building Information Modeling (BIM), in
enhancing the design, manufacture, and
assembly processes in prefabricated and
modular construction.
3.7 Discuss the challenges of transporting,
assembling, and installing prefabricated or
modular units, and how these challenges are
addressed in modern construction practices.
3.8 Compare traditional construction methods
with prefabrication and modular approaches,
focusing on cost-effectiveness, speed, and
sustainability.
3.9 Evaluate case studies of successful
implementation of prefabrication and modular
construction in real-world projects,
highlighting their benefits and limitations.

CE0003 -7: Environmental and Sustainability Issues in Civil Engineering

The aim of this study unit is to develop learners' ability to integrate environmental stewardship and sustainability principles into civil engineering practices. It focuses on equipping students with the knowledge to assess the ecological impact of engineering projects, promote the adoption of eco-friendly materials and methods, and implement effective waste management and energy efficiency strategies. This unit aims to foster a proactive approach to creating sustainable solutions that align with industry standards and environmental regulations.

Learning Outcome:	Assessment Criteria:
1. Evaluate the environmental impact of civil	1.1. Assess the potential environmental impacts of
engineering projects and propose	civil engineering projects, including effects on
sustainable alternatives.	air quality, water resources, soil, and
	biodiversity.
	1.2. Identify key environmental challenges in construction projects, such as habitat
	destruction, pollution, resource depletion,
	and climate change.
	1.3. Evaluate the lifecycle environmental impact of
	materials used in construction, considering
	extraction, production, use, and disposal.
	1.4. Propose sustainable alternatives to traditional
	construction practices, such as the use of
	renewable materials, energy-efficient designs, and low-carbon technologies.
	1.5. Discuss techniques for minimizing waste,
	promoting recycling, and reducing energy
	consumption throughout the project lifecycle.
	1.6. Apply green construction practices, such as
	sustainable site development, water
	management, and habitat preservation, to mitigate environmental impact.
	1.7. Recommend the use of alternative energy
	sources, such as solar, wind, or geothermal, in
	the design and construction of infrastructure.
	1.8. Evaluate the potential for reusing and
	repurposing existing structures or materials to
	reduce the need for new resources.
	1.9. Implement strategies for reducing water
	consumption, managing storm water, and improving site drainage to prevent
	environmental degradation.
	-
2. Apply green building practices and eco-friendly	2.1 Explain the concept of green building practices
materials in design and construction.	and their benefits for sustainability, energy
	efficiency, and environmental impact. 2.2 Identify eco-friendly materials commonly used
	in construction, such as recycled, locally
	sourced, and low-impact materials.

	 2.3 Discuss the principles of sustainable design, including resource conservation, energy efficiency, and minimizing environmental degradation. 2.4 Apply green building certifications and standards (e.g., LEED, BREEAM) to guide the selection of sustainable materials and construction methods. 2.5 Incorporate energy-efficient systems, such as passive heating, cooling, and renewable energy sources, into the design and construction process. 2.6 Assess the lifecycle of materials, considering environmental impact from sourcing to disposal or recycling. 2.7 Design and implement systems for water conservation, waste management, and indoor air quality within the building. 2.8 Evaluate the performance of green buildings in reducing energy consumption, carbon footprint, and environmental harm. 2.9 Provide examples of successful green building projects and the application of eco-friendly materials and practices in their design and construction.
3. Understand the principles of waste management and energy efficiency in civil engineering projects.	 3.1 Explain the importance of waste management and energy efficiency in civil engineering projects, focusing on sustainability and environmental impact. 3.2 Identify common types of waste generated in civil engineering projects, such as construction debris, hazardous materials, and energy consumption. 3.3 Discuss strategies for reducing, reusing, and recycling waste materials on construction sites. 3.4 Apply principles of energy efficiency in the selection of materials, equipment, and construction techniques to minimize energy consumption. 3.5 Implement best practices for managing construction waste, including segregation, proper disposal methods, and compliance with environmental regulations. 3.6 Analyze the role of renewable energy sources and energy-efficient technologies in civil engineering projects.

ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year

	 3.7 Assess the environmental and cost benefits of incorporating energy-efficient designs and waste management systems. 3.8 Develop a waste management plan and energy efficiency strategy for a civil engineering project, ensuring compliance with sustainability standards. 3.9 Evaluate the effectiveness of implemented waste management and energy efficiency measures in reducing environmental impact and improving project performance.
--	---

CE0003 -8: Project Management in Civil Engineering

This study unit aims to provide learners with the knowledge and skills required to effectively manage civil engineering projects. It focuses on developing competencies in planning, organizing, and overseeing projects, with an emphasis on budgeting, scheduling, and resource allocation. Learners will gain practical experience in applying project management tools and techniques to ensure cost efficiency, adherence to timelines, and maintenance of quality standards.

Learning Outcome:	Assessment Criteria:
1. Plan, organize, and manage civil engineering	1.1. Clearly articulate the goals, scope, and
projects, including budgeting, scheduling,	deliverables of the civil engineering project.
and resource allocation.	1.2. Create a detailed project plan outlining
	phases, tasks, milestones, and timelines.
	1.3. Estimate costs for labor, materials,
	equipment, and overhead, and develop a realistic project budget.
	1.4. Allocate appropriate resources (labor,
	materials, and equipment) based on project
	needs, ensuring efficiency and cost-
	effectiveness.
	1.5. Develop a project schedule using tools like
	Gantt charts or project management
	software, identifying key milestones and
	deadlines.
	1.6. Identify potential risks related to cost, time, or quality, and propose mitigation strategies.
	1.7. Regularly track and update project status,
	ensuring adherence to budget, timeline, and
	quality standards.
	1.8. Maintain clear and consistent communication
	with project stakeholders, including clients,
	contractors, and team members.
	1.9. Implement quality assurance processes to
	ensure that the project meets required standards and specifications.
2. Apply project management tools and techniques	2.1 Identify and explain key project management
to control costs, timelines, and quality.	tools used to control costs, timelines, and
	quality, such as Gantt charts, Critical Path
	Method (CPM), and Earned Value
	Management (EVM).
	2.2 Apply budgeting techniques to estimate costs
	accurately and track financial performance
	throughout the project. 2.3 Use scheduling tools to develop and manage
	project timelines, ensuring that milestones are
	met on time.
	2.4 Monitor project progress and adjust schedules
	using project tracking tools like Gantt charts or

3. Understand the roles and responsibilities of	 project management software (e.g., MS Project, Primavera). 2.5 Apply resource management techniques to allocate labor, equipment, and materials efficiently, preventing cost overruns and delays. 2.6 Implement quality control measures, such as inspections, testing, and quality audits, to ensure project standards are met. 2.7 Use performance metrics (e.g., Cost Performance Index, Schedule Performance Index) to assess project performance and make necessary adjustments. 2.8 Identify potential risks to cost, time, and quality and apply mitigation strategies to address them proactively. 2.9 Regularly communicate project status, including cost, timeline, and quality updates, to stakeholders. 3.1 Explain the key roles and responsibilities of a
project managers in large-scale civil engineering projects.	project manager in a large-scale civil engineering project.
	3.2 Identify the project manager's role in defining project scope, objectives, and deliverables.3.3 Describe how project managers oversee
	project planning, including scheduling, budgeting, and resource allocation.
	3.4 Discuss the importance of risk management, including identifying, assessing, and mitigating potential risks during the project lifecycle.
	 3.5 Outline the project manager's responsibility in coordinating multidisciplinary teams and ensuring effective communication among stakeholders.
	3.6 Evaluate the project manager's role in monitoring project progress, ensuring quality control, and adhering to safety standards.
	3.7 Explain how project managers handle issues such as scope changes, delays, and conflicts, and how they implement corrective actions.
	3.8 Discuss the project manager's responsibility in reporting project status to stakeholders and ensuring that project goals are met within budget and schedule.
	3.9 Highlight the role of the project manager in ensuring compliance with relevant regulations, standards, and environmental considerations.

CE0003 -9: Construction Safety and Risk Management

The aim of this study unit is to develop learners' ability to identify, evaluate, and manage safety risks in construction environments. Through an understanding of industry safety standards, risk assessment processes, and the implementation of health and safety management systems, learners will be equipped to foster safe and compliant workplaces, minimizing hazards and ensuring the well-being of personnel on construction sites.

Learning Outcome:	Assessment Criteria:
1. Recognize safety hazards in co	
environments and apply safety regula	
protocols.	1.2. Explain the potential risks associated with
	each identified hazard.
	1.3. Demonstrate knowledge of relevant safety
	regulations and standards in construction.
	1.4. Outline protocols for hazard prevention and control, including PPE use and site
	control, including PPE use and site organization.
	1.5. Perform a basic risk assessment for a
	construction site scenario.
	1.6. Describe the role of safety signage and
	communication in hazard awareness.
	1.7. Explain the importance of emergency
	response planning in construction.
	1.8. Provide examples of applying safety protocols
	to mitigate specific construction hazards.
2. Conduct risk assessments to ide	
mitigate potential dangers on construc	
	sites.
	 Identify common hazards and risks specific to construction activities.
	2.3 Outline the key steps involved in conducting a
	risk assessment, including hazard
	identification, risk evaluation, and
	prioritization.
	2.4 Explain methods for mitigating risks through
	control measures such as elimination,
	substitution, engineering controls,
	administrative controls, and PPE.
	2.5 Demonstrate how to document findings and
	communicate risk assessment results
	effectively.
	2.6 Provide examples of applying risk mitigation
	strategies to real-life construction scenarios.
	 Evaluate the effectiveness of implemented control measures and suggest improvements.
	2.8 Highlight the importance of regular reviews
	and updates to risk assessments as
	and updates to fisk assessifients as

		construction activities evolve.
3.	Understand the importance of health and safety management systems in maintaining a safe working environment.	 3.1 Explain the purpose and objectives of health and safety management systems (HSMS). 3.2 Identify key components of an effective HSMS, such as policy, planning, and monitoring. 3.3 Describe how HSMS help reduce workplace accidents and injuries. 3.4 Explain the role of leadership and employee involvement in maintaining safety. 3.5 Demonstrate the process of hazard identification and risk assessment within HSMS. 3.6 Evaluate the benefits of HSMS, including compliance, productivity, and morale. 3.7 Discuss the importance of audits and reviews for continuous improvement in HSMS. 3.8 Provide examples of successful implementation and outcomes of HSMS in real-world scenarios.

CE0003 -10: Hydraulics and Water Engineering

The aim of this study unit is to equip learners with the knowledge and skills required to apply fluid mechanics principles in the design and management of water systems. This includes the ability to analyze and solve real-world problems related to water supply, drainage systems, flood control, and water treatment. Students will develop the technical competence necessary to evaluate the behavior of fluids in various engineering contexts, and design effective, sustainable water infrastructure solutions.

Learning Outcome:	Assessment Criteria:
1. Apply principles of fluid mechanics to design	1.1. Explain the fundamental principles of fluid
water supply and drainage systems.	mechanics, including continuity, energy, and
	momentum equations.
	1.2. Identify the key parameters influencing fluid
	flow, such as pressure, velocity, and friction losses.
	1.3. Calculate flow rates, pipe diameters, and
	pressure losses using appropriate fluid
	mechanics equations.
	1.4. Design a basic water supply system, ensuring
	adequate pressure and flow distribution.
	1.5. Develop a drainage system layout,
	considering gravity flow and pipe slopes for
	efficient wastewater removal.
	 Apply principles of pump selection and placement in water supply systems.
	1.7. Analyze the impact of material selection and
	pipe roughness on system performance.
	1.8. Evaluate the system's efficiency and suggest
	improvements to optimize performance.
2. Analyze the behavior of fluids in engineering	 Define key properties of fluids, such as density, viscosity, and compressibility, and their impact
contexts, including flow rates and pressure.	on fluid behavior.
	2.2 Explain the relationship between pressure, velocity, and flow rate using Bernoulli's principle.
	2.3 Calculate flow rates and pressures in various
	fluid flow scenarios using continuity and
	energy equations. 2.4 Differentiate between laminar and turbulent
	flow and their implications in engineering
	applications.
	2.5 Analyze fluid behavior in different conduit
	types, such as pipes, open channels, and ducts.
	2.6 Assess the effects of friction, pipe roughness,
	and fittings on pressure losses in fluid systems.
	2.7 Demonstrate the application of fluid behavior analysis to real-world engineering problems,
	analysis to real-world engineering problems,

ICTQual Level 4 Diploma in Civil Engineering 120 Credits – One Year

	such as pump and valve selection. 2.8 Evaluate the performance of fluid systems and recommend adjustments for optimal operation
3. Design and evaluate flood control measures and water treatment systems	 3.1 Identify key factors contributing to flooding, including hydrological and environmental variables. 3.2 Propose structural flood control measures, such as levees, retention basins, and floodwalls. 3.3 Suggest non-structural measures, including zoning regulations, early warning systems, and evacuation plans. 3.4 Design a basic water treatment system addressing common contaminants and treatment stages (e.g., coagulation, filtration, disinfection). 3.5 Evaluate the efficiency and sustainability of proposed flood control measures and water treatment designs. 3.6 Assess the environmental and social impact of flood control infrastructure and water treatment systems. 3.7 Apply principles of hydraulics and water quality analysis in system design. 3.8 Provide examples of successful flood control and water treatment systems in real-world scenarios.

CE0003 -11: Transportation Engineering and Planning

The aim of this study unit is to equip learners with a comprehensive understanding of the principles and methodologies involved in designing and planning transportation systems. The unit focuses on developing the skills necessary to analyze traffic flow, enhance transportation efficiency and safety, and assess the environmental and social implications of transportation infrastructure projects. This foundation enables learners to contribute effectively to sustainable and community-focused transportation development initiatives.

Learning Outcome:	Assessment Criteria:
1. Understand the principles of designing and	1.1. Explain the fundamental principles of
planning transportation infrastructure such as	transportation infrastructure design, including
roads, railways, and airports.	alignment, capacity, and safety.
	1.2. Identify key factors influencing the planning
	and layout of roads, railways, and airports, such as topography, traffic demand, and
	environmental impact.
	1.3. Analyze the functional requirements of
	transportation systems, including
	accessibility, connectivity, and durability.
	1.4. Apply geometric design principles for road
	and railway alignments, such as curves,
	gradients, and cross-sections.
	1.5. Explain the role of materials selection and construction techniques in ensuring
	infrastructure longevity and performance.
	1.6. Evaluate the environmental and social
	considerations in transportation
	infrastructure projects.
	1.7. Develop a basic conceptual design for a
	transportation project, incorporating traffic
	flow and safety standards. 1.8. Assess the efficiency and feasibility of the
	proposed design using relevant criteria and
	tools.
2. Analyze traffic flow and apply transportation	2.1 Define key concepts in traffic flow analysis,
planning concepts to improve efficiency and	including volume, speed, density, and capacity.
safety.	2.2 Identify factors affecting traffic flow, such as
	road geometry, traffic composition, and signal
	timings. 2.3 Apply fundamental traffic flow theories, such
	as the relationship between speed, flow, and
	density.
	2.4 Conduct basic traffic surveys and data
	collection for analysis.
	2.5 Propose measures to improve traffic
	efficiency, including signal optimization, lane management, and roundabout design.
	2.6 Apply transportation planning concepts, such
	2.6 Apply transportation planning concepts, such

	as demand forecasting and modal integration, to enhance system performance. 2.7 Evaluate the impact of proposed measures on traffic safety and accident reduction. 2.8 Provide real-world examples of successful traffic flow improvements and their outcomes.
3. Evaluate the environmental and social impacts of transportation projects on communities and ecosystems.	 3.1 Identify the key environmental impacts of transportation projects, including air pollution, noise, water quality, and habitat disruption. 3.2 Analyze the potential social impacts, such as displacement, changes in community structure, and access to services. 3.3 Assess the long-term effects of transportation projects on local ecosystems and biodiversity. 3.4 Evaluate the potential for mitigation strategies to reduce negative environmental and social outcomes, such as green infrastructure, noise barriers, and community engagement. 3.5 Apply environmental impact assessment (EIA) methodologies to transportation projects, considering both direct and indirect effects. 3.6 Investigate the role of sustainability in transportation planning, including the use of alternative fuels and eco-friendly design. 3.7 Explore the social benefits of transportation projects, such as improved connectivity and economic growth, and assess their distribution across different community groups. 3.8 Provide case studies of transportation projects that successfully balanced environmental, social, and economic impacts.

CE0003 -12: Civil Engineering Design Project

The aim of this study unit is to provide learners with the opportunity to synthesize and apply interdisciplinary knowledge from various domains of civil engineering to design and execute a practical project. It focuses on fostering analytical and creative problem-solving skills, project management proficiency, and the ability to effectively communicate design processes and solutions, preparing students for real-world engineering challenges.

Learning Outcome:	Assessment Criteria:
1. Integrate knowledge from various areas of	1.1. Identify the key components of a civil
civil engineering to design a practical civil	engineering project, including structural,
engineering project.	environmental, transportation, and water
	systems.
	1.2. Apply principles of structural analysis and design to ensure the stability and safety of the
	project.
	1.3. Integrate environmental engineering
	considerations, such as sustainability, waste
	management, and ecological impact, into the
	project design.
	1.4. Incorporate transportation planning concepts to ensure efficient access and connectivity for
	the project.
	1.5. Consider the impact of the project on local
	communities, including social, economic, and
	environmental factors.
	1.6. Use appropriate materials and construction
	techniques based on the project's needs, location, and budget.
	1.7. Develop a project timeline, identifying key
	phases and milestones for implementation.
	1.8. Assess potential risks and propose mitigation
	strategies to address them during the project
	lifecycle.
	1.9. Present a detailed project proposal that integrates knowledge from various civil
	integrates knowledge from various civil engineering disciplines, demonstrating the
	feasibility and sustainability of the design.
2. Apply engineering analysis, design principles,	2.1 Apply engineering analysis techniques to
and project management techniques to develop	assess project requirements, constraints, and
a comprehensive project plan.	feasibility.
	2.2 Use design principles to develop a robust and efficient solution, ensuring safety,
	functionality, and cost-effectiveness.
	2.3 Integrate project management principles, such
	as scope definition, scheduling, and budgeting,
	into the project plan.
	2.4 Develop detailed engineering calculations,

	 drawings, and specifications to guide construction. 2.5 Identify and analyze potential risks, proposing mitigation strategies and contingency plans. 2.6 Incorporate quality control and assurance processes to ensure the project meets required standards and specifications. 2.7 Apply resource management techniques, including labor, materials, and equipment, to optimize project execution. 2.8 Create a realistic project timeline with milestones and deadlines, ensuring efficient progress tracking. 2.9 Ensure compliance with relevant regulations, standards, and sustainability practices throughout the project plan.
3. Present and communicate the design process, including solutions to challenges encountered during the project.	 3.1 Clearly explain the design process, including key stages such as conceptualization, analysis, design development, and final solution. 3.2 Identify challenges encountered during the project, such as technical, environmental, or financial issues, and explain how they were addressed. 3.3 Communicate the rationale behind design decisions, including the trade-offs considered and solutions implemented. 3.4 Present visual aids (e.g., drawings, diagrams, models) to effectively communicate design concepts and solutions to stakeholders. 3.5 Demonstrate how the design process incorporates feedback and iterative improvements to refine solutions. 3.6 Discuss the impact of challenges on the overall project timeline, cost, and quality, and how these were managed. 3.7 Explain the collaboration with other professionals (e.g., engineers, architects, contractors) in overcoming challenges. 3.8 Present the final design solution in a clear and concise manner, highlighting its benefits and alignment with project goals. 3.9 Address potential future challenges and propose strategies for continued improvement or adaptation of the design.

ICTQual AB

Yew Tree Avenue, Dagenham,

London East, United Kingdom RM10 7FN

+44 744 139 8083

Support@ictqualab.co.uk | www.ictqualab.co.uk

Visit Official Web page

Page | 38

Support@ictqualab.co.uk